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GENERAL INTRODUCTION 

Introduction 

The chemistry of organorhenium oxides is extensive, and a lot of this work has been 

done during the past 10 years.' Catalysis drives this area of research. The molecule 

methyltrioxorheniumCvTrj (CHaReOs), or MTO, is among the most imponant or popular 

species in this arena.' Among the most desirable features of MTO, that has allowed its 

chemistry to flourish, are its solubility in numerous common solvents, including water, while 

not having sensitivity to dioxygen. There are also convenient 'H NMR signals, from the 

methyl group, for itself and many of its derivatives, as well as a useful electronic spectnun. 

Reviews on this topics have been published.'"^ MTO was first observed in the late I970's by 

Beattie and Jones'* and was largely left unexplored until the efforts of Herrmaim and 

coworkers realized ways to improve the synthesis in the early 1990's.^'^ These two methods 

both rely on dirheniiun heptoxide and tetramethyl tin as the starting reagents, eq 1, which 

shows the second of these procedures which is yet improved from the first. 

Re207 + 2SnMe4 + • 2 + 

°  o  °  A  J \  
O 0 MejSnO O O OSnMcj 

(1) 

Since the direct alkylation route of dirhenium heptoxide causes a 50% loss of 

rhenium atoms due to formation of trialkylstarmyl perrhenate, the second route, above, uses 

trifluoroacetic anhydride to suppress the rhenium containing byproducts, yet the drawback 

now is the expensive anhydride.^ An even newer route, reported in 1997, is more atom 

efficient and utilizes simple perrhenate salts as the source of rhenium^ and has been used 
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with success in this group recently. The other major advantage of this new route is that it 

uses a form of rhenium which is not sensitive to water and only requires one additional and 

inexpensive reagent, Me3SiCl, and tetramethyl tin as before. This reaction, which can be 

done in one pot, is shown with the presumed intermediates, eq 2. 

OSiMe, CI CH3 
+2Me3SiCl 1 -(Me3Si)20 | -rSiiMe4 1 

4 -2NaCl qS?- II •^O +Me3SiCl Q || "^0 -ClSnMe3 || 0 
0 0 0 

1  + 1  

The recent preparation of a new family of dithiolato-oxo rhenium compounds, 

{CH3(0)Re(SCH2C6H4S)}L or M-L, where L is a Lewis base, recently have been shown to 

be a useful group of catalysts for a variety of reactions.^ A notable example is the catalytic 

removal of oxygen atoms from pyridine-N-oxides, to yield free pyridines, under mild 

conditions. Since catalysis, like many enzymes for that matter, typically require coordination 

or binding of a substrate to an open binding site of a metal, these M-L materials have the 

advantage of an open coordination site, that can be attacked by a basic ligand, is built right 

in; the molecule is five coordinate. This open site is in a position trans to the 0x0 ligand, 

shown below, where L is MePh2P. 

\ PMePha 

M-PMePh2 
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It is observed that the ancillary ligand L, PMePh2 in this case, is in a position trans to the 

phenolic sulfur of the dithiol chelate. The sulfur chelate is strongly bonded, as are the oxo 

and methyl ligands. Further, this is the ligand that is subject to displacement by attacking 

ligands, eq 3, illustrates a good example of a specific reaction, which I have studied. This is 

a noteworthy example since both M-PPhs and M-PMePh- have been characterized by x-ray 

crystallography, so the molecular structures are known. 

During catalysis lots of species that could be ligands are present, especially when 

pyridine, a good Lewis base, is a product. Thus ligand substitution around rhenium becomes 

very important to understand since it is a first step in the catalystic reactions. Thus, kinetics 

and mechanistic studies must be done on a more basic level. Once a better understanding of 

this process is known, it will aid in assigning mechanisms of the catalytic reactions. The first 

thing to consider is that ligand exchange reactions can proceed via numerous mechanism, 

which at the limits are Associate (or A type) or Dissociative (or D type). Studies of these 

ligand exchange reactions and their kinetics and mechanism will be reported in this thesis. 

Further, a turnstile type mechanism in invoked to occur while ligands are exchanging around 

the complexes of the M-L type. This mechanism has recently been proposed for palladium 

complexes which undergo an intramolecular isomerization.' 

The results of ligand exchange studies can be broken down into two groups. 

Specifically, the first group of reactions were observed to follow monophasic kinetics or, said 

another way, follow a single exponential decay. This monophasic nature is supported by lack 

iWCHs + PMePh-

PMePh 

M-PPh3 M-PMePhj 
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of any observable intermediates by 'H NMR. The reactions which are described by eq 4, 

show M-L' reacting with L", in a first order process with rate constant ki, while forming M-

L" while L' is displaced. They appear to give the product right away. 

M-L^ + L^ -^M-L^ + L^ (4) 

After some thought, it seemed difficult to draw a mechanism for this reaction since 

the entering ligand and departing ligand ought enter and leave firom the same position, if the 

principle of microscopic reversibility is to hold. Said another way, the L' ligand can not 

simply depart from the equatorial plane as attacks trans to oxo to form a pseudo 

octahedral transition state complex; only later to allow L" to swing up to occupy the position 

trans to the phenolic sulfur once held by L*. This is a problem that my research addresses, as 

it seems an intermediate should be present, especially given the results of the other type of 

reactions. 

The second class of reactions were actually found to follow "biphasic kinetics" and 

have an intermediate, called I, eq 5. Each step has rate constants equal to ki and ka, 

respectively. All of these reactions were found to have a dependence on the concentration of 

the new ligand, l}, to the first power: a first order dependence. Multiple approaches were 

taken to elucidate this mechanism and assign the rate constants properly, which is not always 

trivial for a biphasic reaction scheme. 

M-L> I ^ M-L^ 
ki k2 

Biphasic reaction schemes are only observable when the rate constants for the first 

and second stage are comparable, given a large excess of one reagent. Certainly the rate 
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constants must be less than one order of magnitude apart and probably should be within no a 

factor of about six. Theoretically, a reactions that appears monophasic could actually be 

biphasic, like eq 5, if the second process, for example, was found to be much more rapid than 

the first; the intermediate reacts and disappears as soon as it is formed, eq 6. If this were the 

case, only k; would be measured. Thus, reactions that show a monophasic dependence were 

re-examined since it seemed like they should have a comparable mechanism. 

1 2 [L^] 2 
M-L^ + I -i—iL M-L^ 

very fast 

By using pyridine ligands, as L' ligands, it was possible to increase that rate of the first step 

to look to see if an intermediate could be seen. In fact, evidence for an intermediate was 

collected, and these results are also reported in the thesis. Since this allowed the second rate 

constant, k2, was determined, it could be compared to k\ for the monophasic reactions widi 

the same L". It was found that k2 is a factor of 200 and 50 for MePh:? and MeaPhP, 

respectively faster, which explains why the first reactions were observed to be monophasic. 

The new M-L complexes that have been described have been realized as a 

consequence of a desire to achieve sulflu" atom U-ansfer with MTO.'° It was the discovery 

that MTO treated with H2S became much better at removing sulfur atoms firom episulfides to 

form triphenylphosphinesulfide in the presence of sacrificial triphenylphosphine.'° This 

rhenium dimer [{CH3(0)Re(SCH2C6H4S)}2], or D, complex was prepared since it has a 

mixture of 0x0 and sulfur ligands, the presimied result of the MTO/H2S mixture.'' The 

species, D, was found to be similar to the dimeric species [{CH3(0)Re(SPh)2}2], which has 

been prepared in the past from MTO and thiophenol by Herrmann and coworkers.'" D can 



www.manaraa.com

undergo monomerization with Lewis bases, to form two equivalent of M-L species, eq 7. 

The Re-S coordinate bonds are broken during this monomerization process. 

S. ^CH 

D 

o  
'\II/CH3 

2PPh3 
• 2 ^PPh3 (7) 

Re, 

M-PPh3 

The kinetics and mechanism of monomerization of the dimer, D, has been reported 

earlier with selected pyridines and substituted trialkyl phosphine ligands.'^ The reaction 

scheme and been proposed, eq 8. The intermediate species are depicted in figure I. 

k4 

^1 
D + L ^ 

2M-L 

2M-L 
(8) 

formerly written 
M-L + M 

The following rate law can be constructed, which can support the current data that has been 

collected and is in the agreement with the above scheme, eq 9. The expression can be 

simplified if Ari[L] and K\Ki\L\ are dropped from the denominator. The expression for kobs 

can be derived by making ka = and kb = kAK\Ki, eq 10. This equation has a 'first order" 

and 'second order* term relative to the concentration of the ligand. I have used a variety of 

phosphines for studying the kinetics and mechanistic smdy on monomeriztion of D with 

ligands that have different cone angles and basisity. 

dt + 

(9) 
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k„bs = 2(k.[L] + kb[Lft (10) 

Since there is no evidence for free or [CH3(0)Re(SCH2C6H4S)] or M (produced down 

the first-order path, or via ks) what was previously written M-L + M will now be called 

DL'". The species DL'" has one coordinate Re-S bond broken, and can presumable undergo 

a fast reaction with a phosphine to break the remaining Re-S bond, figure L 

CH CH 

DL 

DL® 

Figure 1. Structures of various rhenium(V) compounds. 

Support for DL and DL2 comes from two structures had have been determined. The 

first, and previously reported, is an adduct of D and dmso, which forms D-dmso and supports 

DL. A hydroxide bridging adduct species of D has been prepared, 

[Bu"4N][{MeReO(mtp)}2(|i-OH)]. Figure 2 shows the anionic portion which contains 
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s—Re 

[ {MeReO(mtp)} 2(n-0H)]" 

Figure 2. The bridging hydroxide structure of compound {MeReO(mtp) } 2 .  

rhenium. While this compound does not have the same stoichiometry as the intermediate 

DL2, in terms of binding, it offers support of its existence. 

The fact that D and M-L both have a methyl and 0x0 ligand is not by chance, as D is 

first made from MTO." This reaction is shown in eq 8. The rhenium has been reduced here 

from Re(VlI) in MTO to Re(V) in the D, which is why two equivalents of disulfide have 

been produced from half of the dithiol starting reagent, 2-methyhnercapothiophenol. 

CH3 
I 

^ 0^/ ^0 

MTO 

SH 

II ^CH-
Re 

+ 2 
Re. 

(11) 

0 

MTO is most famous for its ability to active hydrogen peroxide and efficiently and 

rapidly deliver an oxygen atom from hydrogen peroxide to a substrate, an oxygen atom 

acceptor, eq 10. 
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H2O2 + X • XO + H2O (12) 

To do so, it can form a monoperoxo and diperoxo species, denoted A and B, respectively, eq 

13. It is these species that actually are the catalytically active form, MTO itself does not 

donate one of its oxygen atoms to substrates. Typically, A and B have comparable 

reactivity.^ 

The final chapter will present a paper in which the topic oxidation of organic 

sulfoxides with MTO and hydrogen peroxide, HP. It was discovered in this work that only B 

can efficiently oxidized sulfoxide and A has virtually no reactivity toward them, eq 14. The 

reason such a study was preformed, is that it adds a nice compliment of results to the 

previous kinetic study of the oxidation of sulfides with MTO and HP.'"* Further, it examines 

whether there is a change in mechanism for this process, as was found for the oxidation of 

organic sulfines.'^ 

(13) 

S-0 S s-0 s  

(14) 
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Dissertation Organ izatioD 

The dissertation consists of four chapters which are written as journal papers. 

Chapter 1 corresponds to manuscript submitted for publication to the Journal of the 

American Chemical Society. This paper concerns ligand exchange reactions around five-

coordinate rheniumO'O compounds. Chapter 2 corresponds to a manuscript describing an 

new hydroxide bridging species derived from the dimer, D, which will be submitted for 

publication to Inorganic Chemistry. Chapter 3 corresponds to a paper concerning the 

products made from treating rhenium(V) compounds with chelating phosphorus containing 

ligands. Chapter 4 reports on the oxidation of sulfoxides with MTO and hydrogen peroxide, 

which has been published in Inorganic Chemistry.^^ Each chapter is self-contained with its 

own equations, figure, tables and references. Following the last chapter is a general 

conclusion. Except for the X-ray sti^uctural analysis, all of the work done and results 

presented were performed by the author, David W. Lahti. 
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CHAPTER I. ISSUES OF MICROSCOPIC REVERSIBILITY AND AN 
ISOMERIC INTERMEDIATE IN LIGAND SUBSTITUTION 
REACTIONS OF FIVE-COORDINATE OXORHENIUM(V) 

DITmOLATE COMPLEXES 

A paper submitted to the Journal of the American Chemical Society. 

David W. Lahti and James H. Espenson 

Abstract 

Ligand substitution reactions between five-coordinate oxorhenium(V) dithiolates, 

[CH3ReO(SCH2C6H4S)X], and entering ligands Y have been studied in detail; Y is a 

phosphine and X is a phosphine (usually) or a pyridine. Many of them occur in two distinct 

stages, although some merge to a single kinetic term when the successive rate constants are 

quite different in value. The biphasic reaction give clear evidence for the intervention an 

intermediate which rises to a level that it can be detected directly by electronic and NMR 

spectroscopy. Even the monophasic reactions follow this pattern, when the first rate constant 

is made larger by substitution of X by a better leaving group. Just for the phosphines, die 

range of rate constants is remarkably large; in the first stage, k spans the range 10~^-10' L 

mol"' s"' at 25 ° in benzene; in the second, which also shows a first-order dependence on the 

concentration of the entering ligand, the range is 10^-10^ L mof's"'. Spectroscopic 

evidence shows that the intermediate has the same composition as the product; the metastable 

form is designated as MeReO(mtp)Y*. The structures of all the isolated products have a 

single stereochemical pattern: Me and -SCH2 lie in trans positions, as do Y and -SAr. This 

is believed to be reversed in the transient, Y and -SCH2 occupying trans position. Further 
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support for this assignment comes from the splitting of the 'H NMR spectrum. It shows 

further splitting indicative of unusual four-bond coupling from a W-pattem of the hydrogen 

and phosphorus atoms. The intermediate does not undergo an intramolecular rearrangement 

to the final product; instead, it reacts with a ligand of the same type, clearly an intermolecular 

rearrangement. The activation parameters were determined for selected reactions and the 

results support a mechanism with considerable associative character, as the AS^ values are ca. 

-125 J K"' mol"'. To account for the intervention of the isomer while honoring the principle 

of microscopic reversibility, a mechanism is proposed involving a C3 rotation of a specific 

group of three ligands in the six-coordinate transition state. Entering ligand must enter from 

the vacant coordination position trans to the Re=0 group; a means must be devised for 

leaving group X to gain that position. Turnstile rotation of the groups X, Me, and Y can 

accomplish the needed transposition; the transition state passes through an approximate 

trigonal prismatic configuration. In so doing, a different and less stable isomer is formed. A 

second reaction, between MeReO(SCH2C6H4S)Y* and Y, then ensues by the same 

mechanism. This turnstile operation generates the product in the stable isomeric form. 

Results are also presented from a study of monomerization of the dimeric rhenium species, 

{CH3ReO(SCH2C6H4S)}2, with phosphines of various size and basicity. The results support 

a mechanism with two intermediates on the pathway to form two equivalents of 
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Introduction 

Oxorhenium compounds are known to catalyze oxygen-atom transfer reactions 

between closed shell molecules. Thus, as has been reviewed/'^ MeReOa (MTO) is an active 

catalyst for the oxidation of many difTerent substrates by hydrogen peroxide: 

X + H2O2 ^ XOH2O (1) 

where X = R2S/ PR3/ alkenes, hydroxylamines, anilines, etc.' Also, the couple 

MeReOj/MeReOz catalyzes the reduction of oxoanions, including perchlorate ions, in aq. 

solution:®'^ 

C10r + 4H3P02-)>Cr + 4H3P03 (2) 

The chemistry of oxorhenium compounds has been developed extensively in the past 

decade."'^'^ The deoxygenation of pyridine N-oxides'° is catalyzed by the Re(V) compound 

MeReO(mtp)PPh3 (Chart 1), eq 3. Here, mtpHa is 2-(mercaptomethyl)thiophenol; many such 

compounds are now known and characterized, with L = phosphine, pyridine, thioether, and 

similar Lewis bases."*'^ 

X-C5H4NO + PPh3 ^ X-C5H4N + PhjPO (3) 

The success of such catalytic conversions rests in part on the replacement of one 

ligand for another, particularly the replacement of a existing ligand by the substrate. Thus, to 

understand the mechanism for catalysis we need to characterize ligand substitution reactions. 

The MeReO(mtp)L compounds adopt an approximate square-pyramidal structure with the 

0x0 group in the axial position; of those characterized to date, in every case the methyl group 

lies trans to the benzylic sulfur of mtp.""'^ This thermodynamic preference for a single 



www.manaraa.com

15 

stereoisomer proves to be an important feature of their substitution chemistry, as developed 

in the course of this research. We have undertaken studies the following reaction 

MeReO(ratp)X + Y -> MeReO(mtp)Y + X (4) 

Pre\ious work on low-valent oxorhenium compounds has shown that the reaction 

adopts an associative mechanism.'*' This aspect will be dealt with in the present reactions but 

as it turns out, some important issues are raised here that, to our knowledge, have not been 

addressed before. Three interrelated issues are: (1) Can L' enter from the lower, vacant axial 

position, L leaving from an equatorial position? Given the requirements of microscopic 

reversibility, this appears to be impermissible. (2) Related to this, can a "wedge" structure be 

formed in an intermediate or transition state, much as has been invoked for square-planar 

complexes? This species, however, lacks a horizontal symmetry plane, so considerations of 

microscopic reversibility again enter, ruling out the wedge structure so often invoked for 

square-planar substitution reactions. In fact, our data will show that the system adopts a 

different and somewhat more complicated mechanism. The structure of these complexes 

ligand access to the vacant sixth coordination position trans to the oxo group. The 

mechanism must, however, satisfy certain requirements, principally that it be symmetric with 

respect to forward and reverse reactions. (3) Can we show the generality of the finding that 

MeReO(mtp)PPh3* is an intermediate in the reaction between MeReO(mtp)Py and PPh3?'^ 

In this study we have also shown that a transient, designated MeReO(mtp)Y*, can be 

detected in kinetics and in spectroscopy with many of the combinations of leaving and 

entering ligands. With other ligand pairs, however, the intervention of MeReO(mtp)Y* has 

been inferred, for reasons to be presented. Here, the notation MeReO(mtp)Y* designates an 
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isomer of MeReO(mtp)Y; we suggest that the methyl group is trans to the phenohc sulfur in 

the intermediate. We will provide support that system adopts a turnstile mechanism'^"'' to 

explain our data. 

Also bearing on mechanistic issues in catalysis, it should be noted that the dirhenium 

compound {MeReO(mtp)}2 (D. Chart 1) is monomerized upon reaction with the same set of 

ligands according to this reversible reaction: 

D + 2L ^ 2M-L (5) 

It, too, starts with attack of L at either (sometimes both) of the equivalent, vacant axial sites. 

Some of the same issues are involved in the mechanism of monomerization, not the least of 

which are the question of the possible involvement of MeReO(mtp)Y* and an assessment of 

the extent to which any MeReO(mtp)Y is formed directly. 

Chart I 

CH 
Re Re 

MeReO(mtp)PPh3 MeReO(mtp)Py 

CH, 

MeReO(mtp)PPh3 ̂ 

II S 

{MeReO(mtp)}2 D 
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Experimental 

Reagents. MTO was prepared from sodium perrhenate according to a published 

procedure."'"' The dimeric complex {MeReO(mtp)}2 was prepared from MTO and mtpH2 as 

previously reported." The dimer was the source of the monomeric phosphine complexes, 

obtained from mixing a 2.1:1 molar ratio of phosphane to dimer in toluene, resulting in 

MeReO(mtp)PR3. The solvent was removed and the compound purified by recrystallization 

from methylene chloride-hexanes after cooling to -10 °C. This procedure was successful for 

the previously-prepared compoimd with PPhs, as well as for new compounds that are 

ai.alogues of it, with PMePhz, PCyPh:, PPhCy2, P(4-C1C6H4)3, P(4-FC6H4)3 and P(4-

MeC6H4)3. 

Previously, MeReO(mtp)PR3 complexes of PPhs and other phosphines were 

characterized spectroscopically and crystallographically." Each complex was characterized 

by 'H, ^'P, and UVA^isible spectroscopy. One can see from Figure 1 that MeReO(mtp)PR3 

complexes are characterized by a weak absorption maximum near 600 nm (e -200 L mol"' 

cm"') and a much stronger shoulder near 400 nm (s ~1500 L mol"' cm"'). Extinction 

coefficients and NMR data are presented for numerous MeReO(mtp)PR3 complexes in 

Tables S-1 and S-2. The difference in intensity between the 600 nm band of reactant and 

product is too low in intensity to be useful for kinetics. Thus most studies were carried out in 

the vicinity of400 nm. 

The isolated MeReO(mtp)PR3 complexes were used directly as the starting materials 

in the kinetics determinations. Because pyridine complexes coordinate more weakly than 

phosphines, an isolated MeReO(mtp)Py complex will dissociate to considerable extent, 

giving rise to the dimer. For that reason, the reactions of MeReO(mtp)Py complexes were 
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Figure I. UV-visible spectra of two compounds MeReO(mtp)-PR3, with PMePhi and PCyj. 

The difference at 500-700 nm is too small to be useful, whereas that near 400 nm provided a 

precise measure of the reaction progress. 

PMePh 
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carried out in the presence of added pyridine to prevent formation of {MeReO(mtp)}2 by die 

reverse of reaction 5. It was shovm that a 10-fold increase in the concentration of free 

pyridine was immaterial. Benzene was used as the solvent for reaction kinetics. 

Kinetics. A Bruker DRX—400 spectrometer was used to record NMR spectra. 

Chemical shifts were recorded relative to tetramethylsilane or the residual proton peak of the 

deuterated solvent. Shimadzu 3101 and 2501 spectrophotometers were used for optical 

spectra and to monitor reactions that lasted longer than ca. 30 s. Two stopped-flow (SF) 

instruments were used for more rapid reactions; one is a single-wavelength Applied 

Photophysics Laboratories (APL) instrument that was also used in sequential mixing 

experiments, the other an OLIS SF apparatus with a rapid-scanning monochromator and 

global fitting programs The SF data obtained with the OLIS instrument was collected over a 

230 nm range, usually 310-540 nm. That window was sometimes narrowed to 350-475 nm 

when little absorbance change could be detected outside that range. Ligand exchange 

reactions usually used the entering ligand at 1-40 mM, a much higher concentration than that 

of the starting complex, typically 80 nM. Reactions of MeReO(mtp)Py (M-Py) complexes 

also contained free pyridine at a concentration of about 1-5 mM. Because the formation 

constants are K (M-PR3)» K (M-Py), these reactions proceeded to completion and their 

rates were independent of the pyridine concentration over the range investigated. The data 

were analyzed by single-exponential (pseudo-first-order) or biexponential equations, as 

needed. 

A sequential SF experiment with the APL instrument was carried out in which the 

two components, MeREO(mtp)(4-Bu^C5H4N) and PMePha, were mixed as usual. After a 

selected time (usually 3.0 s) in the "aging loop" a final reagent (PMe2Ph) was mixed 
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automatically with the first two. Data firom five replicates were averaged to obtain the final 

rate constant. Similar experiments with different reagents that allowed for a longer delay (ca. 

120 s) were performed by rapidly introducing fi-eshly-prepared solutions into the OLIS 

instrument, such that the first measurement could be taken just at 120 s. 

The two equations used for fitting most absorbance-time data are those for first-order 

kinetics, eq 6, and biexponentiai kinetics, eq 7, as in the case where two pseudo-first-order 

reactions occur in sequence. 

AbSt = AbSa, + (Absg - AbSoo )e~'''^ (6) 

Abst = AbSa, H-ae'^'^ + Pe"*^'^ (7) 

Isolation and Crystallographic Studies. The compound MeReO(mtp)PMePh2 was 

prepared fi'om 30 mg of {MeReO(mtp)}2 in benzene and 2.1 eq PMePh2. The solution was 

allowed to evaporate over 2 d, giving bright green crystals in 80% yield. Elem. anal.: found C 

44.72 found (44.12 calcd.), H 3.87 (3.88); S 10.2 (11.2). 

The crystal evaluation and data collection were performed on a Bruker CCD-1000 

diffiractometer with Mo-Ka {X 0.71073 A) radiation. The distance fi-om the dif&actometer to 

the crystal was 5.08 cm. All non-hydrogen atoms were refined with anisotropic displacement 

coefficients. The hydrogen atoms were included in the structure factor calculation at 

idealized positions and were allowed to ride on the neighboring atoms with relative isotropic 

displacement coefficients. The software and sources of die scattering factors are contained in 

the SHELXTL program library, version 5.1^' The absorption correction was based on fitting 

a fimction to the empirical transmission surface as sampled by multiple equivalent 

measxirements.^ 
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Results 

X-ray crystallography. Previous structures of MeReO(mtp)L complexes have been 

determined: L = PPha," Py,'^ and 1,1,3,3-tetramethylthiourea,'^ 4-acetylpyridine'^ and 1,3-

diethylthiourrea.'^ With that, further structural determinations might seem redundant, were it 

not for the way in which the mechanistic results of this study pointed towards an intermediate 

that might be an isomeric form. Thus the structure of the compound MeReO(mtp)PMePh2 

was determined by single crystal x-ray diffraction. The crystallographic information is 

summarized in Tables S-3-to-7 in the Supporting Information. The molecular structure is 

depicted in Figure 2, with a few key bond distances and angles given in its caption. 

Complete information is given in Table S-5 and Figure S-1. This structure is analogous to 

the five preceding ones. The groups about rhenium form an approximate square pyramid^^ 

with the 0X0 group at the apex. All four compounds adopt the same structiural format: the 

CH3 group is trans to the S atom attached to the benzylic carbon; the phenolic S lies trans to 

the Lewis base, here the P atom of PMePh2. This holds irrespective of the electronic and 

steric attributes of the coordinated ligand. 

From this data base we postulate, therefore, that all stable compounds of this family 

have analogous structures. That is to say, this structure is the thermodynamically preferred 

one for all phosphine and pyridine ligands. This argument is key to other assignments that 

we are making as to the probable structiu-e of a metastable intermediate detected by kinetics 

and spectroscopy. We suggest that the intermediate has the CH3 group and ligand reversed. 

Initial Observations. We have examined reactions of the compounds 

MeReO(mtp)X, where X is used to represent the leaving ligand, phosphine (usually) or 

pyridine (occasionally). Upon reaction with an entering group Y, a different phosphine, 
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Figure 2. Perspective view of the rhenium compound MeReO(mtp)PMePh2 with thermal 

ellipsoids at the 30% probability level. Selected bond lengths (pm) and angles (deg): 

Re(l)-0(1), 168.4; Re(l)-C(l), 213.2; Re(l) -P, 245.4; Re(l) -S(l), 227.6; Re(l)-S(2), 

232.1; S(l)-C(2), 184.9; S(2)-C(8), 178.2; 0(1)-Re-C(l), 115.8; 0(1)-Re-S(l), 119.9; 

C(l)-Re-S(2), 123.73; 0-Re-S(2), 106.5, S(l)-Re-S(2), 90.37, C(l)-Re-S(2), 80.22. 

Additional structural parameters are given in Table S-5. 
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MeReO(mtp)Y is formed. This seemingly simple transformation has proved to be more 

intricate than this, however, and is rich in new mechanistic insights. In many cases the 

kinetics and spectroscopy afford direct evidence for the intervention of an intermediate. In 

others, the intermediate could not be seen but we will demonstrate that it is mostly likely 

disguised but not absent. 

It is instructive first to examine one particular combination, X = PPh3 and Y = 

PCyPh2 (Cy = cyclohexyl). When followed spectrophotometrically with [Y] » 

[MeReO(mtp)X], the absorbance at 400 nm first rises and then falls. Figure 3. The same 

experiment monitored by 'H NMR spectroscopy shows the buildup of a resonance at 5.1 ppm 

that later disappears. Analysis of the absorbance-time data, given the large excess of the 

entering ligand, was made by bi-exponential kinetics, which gave excellent fits at each set of 

concentration conditions. The pair of pseudo-first-order rate constants so determined are 

designated k^^ and kp, describing their relative nimierical values. We defer momentarily a 

specification as to which rate constant is the first or second in the sense of the chemical 

reaction scheme (this is the context for which the designations ki and k2 are reserved). The 

kinetics determinations were carried out at several concentrations of PCyPhz. Figure 4 shows 

that k(^ and kp are both linear fractions of [Y] that extrapolate to the origin. Thus both 

stages and not only the first is a displacement process. An abbreviated scheme is therefore: 

M-X -^X + Int; Int -X^Y + M-Y 
kj k2 

Spectroscopic data indicate that the intermediate contains [MeReO(mtp)] (or M) and 

Y, but not X, as written in eq 8. The doublet pattern for C//3 in the 'H NMR spectrum shows 
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Figure 3. The absorbance-time data for a reaction between 0.58 mM MeReO(mtp)PPh3 and 

45 mM PCyPha at 298 K in benzene. A fit to biexponential kinetics gave these rate constants: 

ka = 1.15 X 10"^ s ' and kp = 1.83 x 10"* s"'. 
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Figure 4. The plots show values of ka (circles) and kp (squares) against [PCy2Ph], including 

data taken at two wavelengths, 360 nm (filled symbols) and 410 nm (cross-hatched symbols). 

The least-squares slopes are 2.4 x 10"^ and 4.2 x 10"^ L mol"' s~'. 
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that M-X, M-Y and the intermediate contain a single phosphorus atom coordinated to Re; a 

more complex pattern would have been seen if X and Y had both remained coordinated in the 

intermediate species. 

Successive Displacement Reactions. For the other X, Y pairs whose reactions 

follow bi-exponential kinetics, the pattern is the same. For each ligand pair it is possible to 

evaluate its two first-order rate constants and substantiate that both vary linearly with the 

concentration of Y. The resulting data take the form of second-order rate constants, 

designated ka and kp, as summarized in Table 1. Three entering ligands were used, Y = 

PCyPh2, PCy2Ph and P(4-MeC6H4)3. For each, one member of the pair of rate constants for 

each X ligand has the same value, within the precision of resolving the pair of values from 

bi-exponential fitting. Irrespective of whether the constant member is a value of ka or kp, we 

designate it as k2. This assignment rests on the fact that the second-stage reaction does not 

retain any involvement of X (see eq 8). To reiterate this important point: according to eq 8, 

every reaction of a given Y has the second chemical step identical for all X ligands. Thus its 

rate constant kz must be the same for each X ligand. The data in Table 1 show that constancy 

reasonably well and thus lend support to the reaction model. 

NMR Studies of the Intermediate. On the basis of this assignment, 'H NMR 

spectroscopy was used to examine the reaction, particularly to provide confirmatory evidence 

for the existence and composition of an intermediate. The reaction between 

MeReO(mtp)PPh3 and PCyPh2 gave rise to new resonance at 5.1 ppm that developed and 

then disappeared; see Figture S-2. Since its intensity is not large, it is clear that the 

intermediate never attains a high concentration. The spectrophotometric data afforded rate 

constants of 2.6 x 10~^ and 4.1 x 10"^ s~^ The assignment made earlier was k2 = 2.6 x 10"^ 
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Table I. Rate constants for the biphasic ligand exchange reactions at 25 °C. The ligand on 

rhenium initially is X, and the new (entering) ligand is denoted Y. 

entry 
sorted by ka and kp 

(L mof's"') 

sorted by ki and k2 

(L mol'' s"') 

PartA: Y = PCyPh2 

1 P(4-MeC6H4)3 0.021 0.0016 0.0016 0.021 

2 PPh3 0.026 0.0041 0.0041 0.026 

3 P(4-C1C6H4)3 0.035 0.023 0.035 0.023 

4 P(4-FC6H4)3 0.037 0.024 0.037 0.024 

5 cr 0.52 0.024 0.52 0.024 

6 PMePh2 -0.05" -o.og'' 

av 0.024 

PartB: Y = PCy2Ph 

7 P(4-MeC6H4)3 2.7 X 10~* 1.0 X lO"* 1.0 X 10~* 2.7 X 10"^ 

8 PPh3 4.4 X 10"^ 1.9 X 10"* 4.4 X 10"" 1.9 X lO"" 

9 P(4-C1C6H4)3 5.5 X 10*^ 2.5 X 10"* 5.5 X 10"" 2.5 X 10^ 

av 2.4 X 10"* 

P a r t C : Y  =  P ( 4 - M e C 6 H 4 ) 3  

10 PPhs 

11 P(4-C1C6H4)3 

12 PMePh2 

0.021 0.0016 

0.055 

0.021 

0.033 

0.0016 

av. 0.051 

a) result from poor fitting 
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s'\ made on the basis that kj would be the same for all X, is thus confirmed. Only when the 

second rate constant is much larger than the first will the intermediate be held at a low 

concentration. From these values the maximum extent of buildup of the intermediate is: 

k. 
[Int] 

/ ,  \  
max (9)  

[MeReO(mtp)PPh3 Jq 

which is 11% in this instance. This agrees with the value obtained from integration of the 

NMR spectra, ca. 10% intermediate at the maximum. The results of a similar reaction 

between MeReO(mtp)(4-ClC6H4)3 and PCyPhz gave rise to 45% buildup of the intermediate 

observed, as depicted in Figure 5, in agreement with the calculation from eq 9 given the 

assignment of reaction steps in Table 1. Figures S-3 and S-4 show the time evolution of the 

intensities of each product, starting material, and intermediate attained by integration of the 

NMR experiments shown in Figures 5 and S-2, respectively. The NMR spectrum of the 

intermediate is quite distinct. The C//3 resonance is split into a doublet by a single ^'P from 

Y; X is absent in the spectrum of the intermediate, consistent with eq 8. 

Reactions Shoving Single-Stage Kinetics. Absorbance-time data from a number of 

other groups of reactions between MeReO(mtp)X and Y are accurately fit by simple first-

order kinetics. With X = PPhs and Y = PMePh2, for example, the time course for product 

buildup is defined with k = 2.02 x 10"^ s"' in benzene at 25.0 °C. Figure 6 illustrates the data 

and the least-squares fitting. The occurrence of monophasic kinetics is not an isolated 

instance, as shown for the 10 entries in Table 2; in these cases no intermediates were detected 

by NMR. Figure S—5 shows the linear relationship between the concentration ofMePhiP and 



www.manaraa.com

29 

J 

—1 1— 
5 . 2  5 . 0  4 . 8  4 . 6  4 . 4  4 . 2  4 . 0  3 . 8  3 . 6  3 . 4  3 . 2  3 . 0  p p m  

Figure 5. A series of stacked 'H NMR spectra recorded during the reaction of 3.5 mM 

MeReO(mtp)P(4-ClC6H4)3 and 36 mM PCyPha in CaDs at 25 °C. The peaks of the 

intemiediate have resonances at 2.99 (CHyRe), 5.1 and ca. 4.9 (two CHa protons) ppm. 
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Figure 6. The absorbance-time course of a reaction between 0.66 mM MeReO(mtp)PPh3 and 

7.83 mM PMePh2 in benzene at 25.0 ®C. The reaction follows first-order kinetics, with k = 

2.02 X 10"^ s'^ 
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Table 2. Rate constants from monophasic ligand exchange reactions at 25 °C.  The displaced 

ligand is X and the new entering ligand is Y. 

entry X Y k® (L mol"' s"') 

I P(4-C1C6H4)3 PMePha 2.83 ± 0.02 

2 P(4-FC6H4)3 PMePhi l.I0±0.02 

3 PPh3 PMePh2 0.282 ± 0.005 

4 PPh3 P(MeO)Ph2 0.126 ±0.003 

5 P(p-tolyl)3 PMePh2 0.089 ± 0.001 

6 PCyPhz PMePh2 0.062 ±0.001 

7 PCyzPh PMePh2 0.0220 ± 0.0003 

8 PCy3 PMePh2 0.0018 ±0.0001" 

9 PPh3 PMe2Ph 23.0 ±0.1 

10 PMePhz PMe2Ph 37 ±1 

a) believed to be ki in eq 8 
b) results from an NMR experiment, other from UV-visible kinetics 

the observed rate constant for its reaction with MeReO(mtp)PPh3, with some NMR data 

included as well, Figure S-6. 

Rather than invoke a different reaction scheme for this set, we have explored the 

possibility that those cases following first-order kinetics reflect just one limit of the general 

two-stage scheme in eq 8, except that one step is much faster than the other. The limit carmot 

be obtained with ka « ki, for then the value of k for each grouping in Table 2 would 

represent ki, and the same value, independent of the identity of X, would have been found. If 

the original premise is correct, then reduction of bi-exponential to first-order kinetics must be 

the consequence of the reverse inequality, k2 » ki. That is, the experiments would record 
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the values of kt, a quantity varying with X and Y; the contribution of the kz reaction would 

have been lacking since that step was relatively much faster. 

A Better Leaving Group. To pursue the issue just alluded to, we chose to use as the 

starting compound a complex with X = 4-Bu'C5H4N. Earlier work'" has shown that pyridine 

complexes are much more labile than phosphines. Experiments were carried out on three 

MeReO(mtp)NC5H4R derivatives and two phosphines. Figiires S-7 and S-8 show 

juxtaposed spectra for such an experiment and a single wavelength kinetic trace extracted 

from these data, which shows bi-exponential kinetics, respectively. Table 3 summarizes 

these rate constants. The smaller values can be identified as belonging to the second stage; 

MeReO(mtp)Y* + Y has ka = 53 L mol"' s"' (Y = PMePh2) and 1.1 x 10^ L mof's"' (Y = 

PMe2Ph). 

The significance of these rate constants can be appreciated by reference to Table 2. 

In reactions with these phosphines as Y only a single stage was seen. For reasons aheady 

stated, the derived rate constants are the values of ki. The range of ki values is 0.0018-2.8 L 

mol"' s"' for Y = PMePh2. Naturally then, with ka = 53 L mol"' s"', the second stage is so 

much more rapid than the first that it went undetected. The same considerations apply to the 

case Y = PMePhi. 

These data confirm that all the reactions investigated follow the same two-step 

scheme. Of the three cases with kinetics that do not conform to a two-stage reaction, the two 

dealt with in this section can be seen to simplify to first-order kinetics only because of 

inequalities in the rate constant values. 

Diverting the Intermediate. The data have shown that the second reaction, between 

MeReO(mtp)Y* and Y, gives the final product MeReO(mtp)Y. The most reasonable 
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interpretation of this finding is to suggest that this step is also a displacement of one Y by 

another. To demonstrate this, a system was found in which a third ligand Z could be 

introduced. For this purpose, MeReO(mtp)4-Bu'NC5H4N and PMePh2 were first mixed in 

the stopped-flow apparatus. After a specified delay time of 3.0 s, calculated from the rate 

constants in Tables 1-3, so as to maximize the concentration of the intermediate, the third 

reagent, Z = PMe2Ph, was introduced. The absorbance-time trace was then monitored at 390. 

Table 3. Rate constants for the biphasic ligand exchange reactions at 25 °C that involve 
various Me(0)Re(mtp)-pyridine compounds, M-X, and entering ligands, Y. 

X Y ka = ki (L mol"' s"') kb =k2 (L mol"' s"'/ 

C5H5N PMePh2 1940 52 

4-MeOC5H4N PMePh2 1044 53 

4-Bu'C5H4N PMePh2 1089 52.8 

C5H5N PMe2Ph -2x10^'' -1430" 

4-But5H4N PMe2Ph 82500 1100 

a) k: refers to the reaction between MeReO(mtp)Y* and Y 
b) denote that rate constant are approximate 

Scheme 1 depicts the reactions. Analysis of the kinetic data for this stage shows that the 

apparent first-order rate constant is directly proportional to [PMe2Ph], as shown in Figure 7. 

The rate constant for MeReO(mtp)PMePh2* and PMe2Ph is 1.7 x 10^ L mof' s~'. The 

slower stage in the kinetics originates from the independently-known reaction of 

MeReO(mtp)PMePh2 with PMeiPh. This is the single example of a reaction in which a 

ligand displaces a different ligand from the intermediate. 
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Scheme I. A reaction sequence showing the generation of the intermediate and it reacting 

with two non-equal ligands. 

PMePh2 
MeReO(mtp)NC5H4Bu' Py + MeReO(mtp)PMePh2* 

Y = PMePh2 Z = PMezPh 

Y + MeReO(mtp)PMePh2 Y + MeReO(mtp)PMe2Ph 

A second experiment explicitly for the intermediate was carried out between 

MeReO(mtp)4-Bu'C5H4N and Meabpy (4,4'-dimethyl-2,2'-bipyridine). Pyridine complexes 

exist in an approximate 9:1 ratio of isomers favoring M-L over M-L*, unlike phosphine 

complexes for which the M-L* isomer remains below the detection limit at equilibrium. 

This reaction gave two isomers: 

H.C-S \ 

MeReO(mtp)(Me2bpy) MeReO(mtp)(Me2bpy)'* 

Our characterization of the two reagents and two products can be made on the basis 

of the NMR spectra, on the basis of their chemical shifts as calibrated by similar isomers 

with phosphine ligands. The two methylene protons of the mtp ligand appear as two 
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Figure 7. The time course of a reaction between 80 nM MeReO(mtp)PMePh2* 7.0 mM 

PMeiPh at 25 °C in benzene. The fit of these data to bi-exponential kinetics gave these rate 

constants, 12.3 s"' and 0.17 s~'. The inset shows that the larger rate constant is linearly 

dependent on the concentration of PMe2Ph. 
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doublets, the separation between which prove to be indicative of the isomer obtained. On the 

basis of such comparisons, we can readily suggest structural assignments given. 

Activation Parameters. Several biphasic reactions were recorded as a function of 

temperature. Bi-exponential fitting was used to resolve the two components. The resulting 

first-order rate constants were divided by the concentration of the entering rate constants, 

generating the values of the rate constants for the first and second stages, kt and ki. The 

temperature dependence of each of these rate constants was analyzed in terms of the 

transition state theory equation, resulting in values of the entropy and enthalpy of activation. 

Thus two sets of parameters result, one for the reaction of the stable stereoisomer, 

MeReO(mtp)X, the other for the metastable form MeReO(mtp)Y*. The results are presented 

in Table 4 and an Eyring plot is presented. Figure S-9. 

Table 4. Rate constants and activation parameters for selected ligand exchange reactions. 

X Y k298 / L mof'S-' AH^/kJmol*' AS^/Jmof'K-' 

Part A: Stable compounds 

4-Bu'C5H4N MezPhP 8.25x10'' 8.1 ±0.9 -124 ±3 

4-Bu'C5H4N MePhzP 1.09x10^ 17.7 ±1.0 -127 ±3 

PPh3 MezPhP 2.3x10' 26.9 ±0.5 -128 ±2 

PPhs CyPhzP 4.1x10-^ 47.6 ±2.0 -130 ±4 

Part B: Metastable intermediates^ 

MezPhP* MezPhP 1.1x10^ 19.5 ±0.7 -121 ± 3 

MePh2P* MePhzP 5.3x10* 18.2 ±1.0 -151 ±3 

CyPhzP* CyPh2P 2.6x10^ 25.5 ±2.0 -189 ±6 

a) The one case in which the intermediate reacts with a ligand different &om the coordinated one; 
MeReO(mtp)PMePh2* and PMczPh, give k = 1.78 x 10^ L mol"' s*'. 
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Monomerization. An extensive set of data has been obtained pertaining to the rate 

of the following reactions:'^ 

{MeReO(mtp)}2 + 2 PR3 2 MeReO(mtp)PR3 (10) 

The rate law found from earlier work and confirmed for additional phosphines in this study 

is: 

^£ME5f^2!EES3l = 2x[(MeReO(mlp)|2]x(k,[PR3] + k|,[PR3]2) (11) 

Table 5 presents the new data along with information fonn the earlier study. Figure S-10 

shows the relationship between k and [CyPh2P] for the monomerization reaction. To a rough 

approximation, the first term is adopted preferentially by phosphines of smaller size (cone 

angle) and vice-versa. The situation is not straightforward, however: note that P(0Me)2Ph, 

for which ka carries the entire reaction, lies at one end of the selectivity range, whereas 

P(0Me)Ph2 lies at the other. We calculated relative importance of each pathway as a 

function of phosphine complexes for several PR3 ligands (Figure S-11). The poorly donating 

PPhs primarily reacts though the first-order pathway. 

Table 5. The kinetic information for monomerization of by {MeReO(mtp)}2 phosphines. 

ligand KA kb 
-AHHP 
kcal/mol 

cone angle KB/KA 

P(MeO)2Ph 12.4 ±0.3 ca. 0 120 0 

PPhs'' 0.0082 0.052 21.2 145 6.4 

PCy2Ph 0.029 ± 0.003 1.7 ±0.3 162 58 

PCyPh2 0.060 ±0.004 6.2 ± 0.4 153 103 

PCyj 0.13 ±0.04 15±2  33.2 170 115  

PMePh2 3.5 ± 0.6 2100±150  24.7 136 600 

P(MeO)Ph2 0.7 ±0.2 590 ± 40 132 842 
a)Fromref. 12 
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For certain Y ligands, {MeReO(mtp)}2 gave some (M-Y)* along with (M-Y), 

especially for those ligands with a slower M-Y* + Y reaction. With PMePhi and PMe^Ph, 

M-Y* could not be detected by NMR. Larger ligands gave initial yields of the 

intermediate of 18% (PCyPh2) and 25% (PCy2Ph). Further studies are needed, however, as 

these data are quite limited. 

Discussion 

Experimental Findings. A succinct recapitulation of the experimental observations 

is given to guide the discussion. The reaction between MeReO(mtp)X (M-X) and Y gives 

the eventual product M-Y; both compounds have the same geometry. These reactions often 

follow bi-exponential kinetics. In the first stage M-X and Y form an intermediate M-Y* 

with the same composition as M-Y. That both have a 1:1 ratio of Re:Y and X is absent. In 

the second stage, M-Y* reacts with a second Y to form the stable product M-Y. The rate of 

each step in the sequence is directly proportional to the concentration of Y. The rate constant 

for the second stage (between M-Y* and Y) is independent of the identity of X in the parent 

complex. A certain subset of these reactions seems to occur in a single stage, but that was 

shown to be a consequence of the inequality k2» ki. With Py as the leaving group and Y 

the same, the first stage was much faster; again following bi-exponential kinetics. The rate 

constant of the slower stage is the value of k2 for the reaction of M-Y* and Y, previously 

disguised. The values of both ki and ki depend on the identities of the leaving and entering 

ligands. 

Issues of Mechanism. As to the molecular mechanism, this system poses some 

intricate questions that go beyond the reaction scheme presented in eq 8. A complete 

mechanism must at the very least accoimt for the need for a two-stage mechanism. 
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accommodate the precepts of microscopic reversibility, address the existence of an 

intermediate that can be detected and trapped, account for the trends in reactivity for each 

step in the mechanism and satisfy the requirement for chemically-reasonable species along 

the reaction coordinate. 

The Intermediate is an Isomer. The spectroscopic data point to M-Y* being an 

isomer of the stable M-Y; the suggested structtiral formula is given in Chart 1. Both M-Y* 

and M-Y complexes show a doublet resonance in the NMR spectrum for the CZ/sRe 

group when Y is a phosphine from splitting by ^'P. The NMR spectrum reveals that both 

peaks of both forms have similar but recognizably different chemical shifts. This shows that 

only one phosphorus atom is coordinated because a more complex splitting pattern is found 

with Y = l,2-bis(diphenylphosphino)benzene. Its chelating phosphorus atoms are 

inequivalent, and a complex family of multiplets is the resultant. 

The inequivalent methylene protons of mtp appear as doublets with J ~ 12 Hz, from 

coupling between the diastereotopic hydrogens. Both resonances in the M-Y* lie downfield 

of those in M-Y. The separation between the doublets in M-Y* is 0.2-0.75 ppm, compared 

to l.l-l .7 ppm in M-Y. Once established, this pattern can serve as a diagnostic tool of 

structure in compounds for which the assignment is less evident. 

In every instance in which the 'H NMR spectrum of M-Y * (liere, Y has a P donor 

atom) could be recorded, a further splitting of one (but not both) of the methylene protons of 

mtp in the 'H NMR spectrum of was found, making it appear as a doublet of doublets, table 

7. The secondary coupling has J ca. 4.5 Hz. This secondary sphtting was absent, however, 

for the more stable isomer, which shows both protons as simple doublets: 
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Table 7. The chemical shift of the methylene protons of the mtp ligand of selected 
Me(Q)Re(mtp)L compounds in CeDe-

Chemical shifts (ppm) for CH2 MeReO(mtp)L MeReO(mtp)L* 

L = PCyPh2 4.90 (d) 3.13 (d) 5A0^ 4.80 (d) 

L = PCy2Ph 5.05(d) 3.39(d) 5.16^ 4.68(d) 

L = Me2bpy 5.27 (d) 4.15(d) 5.45(d) 4.72(d) 

L = 4-Bu'C5H4N 4.79(d) 3.78(d) 5.21(d) 4.89(d) 

a) doublet of doublets 

Broadband decoupling of ^'P centered at 25 ppm removed the secondary splitting; it is thus 

shown to arise from a coupling to ^'P. The original and decoupled spectra are presented in 

Figure 8. That it should occur in the isomer in which the methylene group is bonded to the S 

trans to P, but not in that with a cis arrangement, suggests to us an unusual four-bond 

coupling pattern. A few precedents in organic compounds can be cited."'*"^® Further, a 

coupling pattern to dissimilar from that seen in these experiments has been observed for one 

H atom of a metal-coordinated SH2; one H appears as a doublet of doublets (the first 

coupling from diastereotopic hydrogens) owing to an ancillary phosphine ligand that is also 

coordinated to the metal.^^ 

Long range (four-bond) couplings may occiu- when a W-configuration exists. Such 

an arrangement can be drawn here, involving HaHb-C-S-Re-P. Its two three-atom 

components form a dihedral angle of ca. 160°; planarity is not a requirement, however. This 

is the arrangement of atoms by which Ha couples to phosphorus: 

Re 
Hb^ 
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Figure 8. 'H and 'H{^'P} NMR spectra of a solution containing both isomers of 

MeReO(mtp)PCy2Ph are shown over a narrow range of chemical shifts. The doublet at 5.04 

ppm is from one of the methylene protons of the more stable isomer. The other resonances 

arise from the pair of methylene protons of MeReO(mtp)PCy2Ph*. The downfield resonance 

appears as a doublet of doublets owing to four-bond coupling to ^'P; that resonance becomes 

a doublet as well upon broadband decoupling. 
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The Turnstile Mechanism. To account for the various issues raised, we suggest the 

sequence of events depicted in Scheme 2. 

Scheme 2. Proposed reaction pathway for Ugand exchange. 

• R e .  
'CH CH 

M-X 

observable 
intermediate 

+ Y M-Y 

rotation • R e  
CH 

CH 

M-Y 

(1) The entering nucleophile attacks rhenium at the only reasonably-available site, the 

open coordination position trans to the oxo group, to yield an intermediate proposed 

to have a six-coordinate, approximately octahedral, structure. The interaction 

between Re and Y in this position must be weak, because monodentate ligands are 
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not known to form six-coordinate structures in this group of compounds. It can be 

presumed that Y repeatedly enters and leaves prior to the next step. 

(2) The six-coordinate intermediate lies on the pathway for substitution; it must be 

transformed into a substance in which Y becomes strongly attached to rhenium as the 

bond to X weakens. Imagine this is accomplished by a rotation about one particular 

pseudo-Cj axis of the octahedron; this axis has the donor atoms of X and Y and the 

CH3 group. This is termed a turnstile rotation. At a rotation angle of ca. 60°, the 

molecule passes through an approximate trigonal prismatic geometry. This is not an 

unreasonable, because trigonal prismatic geometry is not too badly destabilized by 

the d" electronic configuration of Re(V). Instances of this geometry have been well 

established, including several rhenium compounds.^®'^' 

(3) As rotation continues to ca. 120°, an approximately octahedral configuration is 

restored, which may take any of three forms. Trivially, the rotation would restore X, 

Y, and CH3 to their original forms and no net change would be realized. A second 

nonproductive event would be to place the CH3 group trans to 0x0; the strong Re-C 

covalent bond will not break, so further rotation presumably ensues. The rotation 

that puts X in the position trans to the 0x0 group gives the important intermediate 

that lies along the reaction coordinate. X then leaves from that position. It is the one 

at which Y entered; this premise goes a long way towards satisfying microscopic 

reversibility. 

(4) The species so formed has the composition MeReO(mtp)Y*, to the formula of which 

has been added the asterisk denoting it as the detectable intermediate. Examination 
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of the structural formulas in Scheme 1 reveals that turnstile rotation indeed produces 

a stereoisomer different from the stable form. 

(5) Because MeReO(mtp)Y* is not the stable form, as judged by crystal structures of 

various isolated complexes, it must undergo further rearrangement. This is 

accomplished not by a unimolecular process, but by a bimolecular one. A second 

entering ligand Y attacks the intermediate, as required by the form of the rate law. 

(6) It is only logical to presume that the second stage reaction adopts the same 

mechanism as the first. Following the structural formulas in Scheme I, it can easily 

be seen that the same sequence of events produces the more stable isomer of 

MeReO(mtp)Y. 

Six-coordinatioD. In view of the proposal that Y adds to the vacant position trans to 

the 0X0 group, it is important to learn whether stable compounds exist with a six-coordinate 

geometry. None has been found with any monodentate ligand examined. Only when the 

chelate effect is invoked are such compounds obtained. In addition to the data reported here, 

examples of six-coordinate MeReO(mtp)(LL) compounds are known with 1,2-

bis(diphenylphosphino)benzene^^ and with bipyridine ligands such as Mezbpy in this work 

and various other bpy and phen ligands.^^ 

The presxmiably concurrent reactions of Meibpy were carried out with a mixture of 

die isomers MeReO(mtp)NC5H4Bu'* and MeReO(mtp)NC5H4Bu' that remain in equilibriiun. 

These isomers equilibrate fairly rapidly,^'^ the 'H NMR spectra shown equilibrium proportion 

of about 10% of the less favored isomer. From the pattern of chemical shifts (Table S-8), two 

products were identified, MeReO(mtp)(Me2bpy)* (90%) and MeReO(mtp)(Me2bpy) (10%), 

as in Scheme 3. 
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Scheme 3. Reactions forming isomeric bipyridine complexes. 

MeReO(mtp)Py 

Me2bpy 

-Py 

Me 

MeReO(mtp)Py* 

Me2bpy 

-Py 

N^^Me 

o 

Because of equilibration between the two parent compounds within t <1 min, this 

result can be interpreted to mean that both reactions with Me2bpy have nearly the same rate 

constant, such that the product distribution is close to that of the parents. We ask if this is 

reasonable, because PMeiPh reacts differently with MeReO(mtp)PMePh2* (k = 1.7 x 10^ L 

mol*' s"') and MeReO(mtp)PMePh2 (k = 37 L mol*' s"'). In defense of the original precept 

for pyridine ligands, however, it should be noted that all phosphine ligands give rise to an 

undetectably low concentration of the isomer. Thus reactions of the isomeric phosphine 

complexes proceed with substantially different driving forces, a factor that may account for 
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the kinetic advantage of one isomer. The pyridine complexes, on the other hand, differ in 

stability by only AG° ~5 kJ mol"' in favor of M-Py, and the two isomers thus might differ 

little in reactivity. 

A counter-argument can be offered, however that the chelated bpy products come to 

equilibrium on their own. In that case, the product ratio is a simple reflection of a 9:1 

equilibrium ratio of the two isomers of MeReO(mtp)(Me2bpy). That suggestion is untenable, 

however, because the less stable isomer is in the large majority. Under these conditions, no 

evidence was obtained for unimolecular interconversion of the isomers of 

MeReO(mtp)(Me2bpy). The reaction in Scheme 3 with an arrow marked "?" does not occur, 

g 
according to this interpretation. The cis-trans isomenzation of Me2ReO(bpy)Cl perhaps 

adopts a turnstile mechanism as well, contrary to the suggested mechanism in which one arm 

of the bpy chelate was proposed to dissociate. 

The Rate Constants and their Activation Parameters. The mechanism is 

associative, as shown by the first-order dependence on ligand Y in a step that gives rise to a 

six-coordinate intermediate in a fast prior-equilibrium. The rate controlling step is the 

turnstile rotation. To show the effects of changing X and Y, the rate constants for selected 

reactions are presented in a different arrangement in Table 6. The best Lewis bases are the 

most reactive nucleophiles Y; their influence is substantial as represented both by the 

strength of the equilibrium interaction and by the increase in bonding strength as the stronger 

ligand Y turns into an equatorial position. The leaving group X has the opposite effect, the 

weakest nucleophiles reacting more rapidly. For X, however, the effect should be confined 

to the turnstile step, as X rotates into the lower axial position at which its bonding is weaker. 
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Table 6. Rate Constants as a Function of Leaving (X) and Entering C^) Groups. 

Part A: MeReO(mtp)X + Y 

Y-^> PMezPh PMePh2 PCyPha PCyaPh P(p-tolyl)3 
X i 

cr 0.52 

PMePhz 37.0 -0.09 0.0016 

P(4-C1C6H4)3 2.83 0.037 0.0055 0.033 

P(4-FC6H4)3 I.IO 0.035 

PPh3 0.282 0.0041 0.00044 0.0023 

PCyPhz 0.062 

PCyaPh 0.022 

PCyj 0.0018 

Part B: MeReO(mtp)Y* + Y 

Y-> PMe2Ph PMePhz PCyPha PCyzPh P(p-tolyl)3 

MeReO(mtp)Y» 1100 53 0.024 0.0002 0.05 

Again, however, the overall chemistry is associative. This description describes M-X to M-

Y*; the second stage merely repeats the steps in the first. 

An interesting correlation of the kinetic data has been realized against the 

stereoelectronic parameter Xd parameter from the QALE method for phosphane ligands.^^ 

This parameter is a good measure of bonding ability. For a series of reactions in which the 

entering ligand Y was PMePhz, a linear plot of log k vs. Xd was obtained. Linear regression 

gives a slope of 0.19 ± 0.02 (Figure S-12). The same data show that bonding ability 

(measured by the pKa of RjPiT'") and steric considerations (from the cone angle 0) both play 

a role. With these parameters, the correlation of the rate constant is given by: Xd = 27.79 -
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1.47 pKa - 0.069 0. A Hammett LFER correlation yields p = 1.3 (Figure S-13), suggesting 

that negative charge builds-up in the transition state. 

MeReO(mtp)Py + PPha, a reinterpretation. The rate of replacement of Py by PPha 

from MeReO(mtp)Py was previously reported to occur by parallel pathways, one involving 

MeReO(mtp)PPh3*, the other "direct", represented by the rate constant k^.'^ The reaction 

sequence is shown in Scheme 4. 

Scheme 4. Originally-proposed route from pyridine to phosphine complex. 

MeReO(mtp)PPh3 

This model fits the data, with these values of k/L mol"' s"': ks = 88.0, k.5= 16.1, kg = 6.27, and 

k? = 0.2. Because k-5[Py] » kvPPha], the rate expression is: 

ks [PPN 

MeReO(mtp)Py ^ - MeReO(mtp)PPh3' 

kskyCPPhs] 
X [MeReO(mtp)Py] x [PPh3 ] (12) 

We now propose an alternative in which both pathways proceed by way of the M-Y* 

intermediate, and now claim that a direct pathway does not exist. The new reactions are 

shown in Scheme 5. 
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Scheme 5. Revised reactions for the conversion of a pyridine to a phosphine complex 

ks [PPha] 

MeReO(mtp)Py ^ ^ MeReO(mtp)PPh3* 

k-5 [Py] 

k-a [Py] ks [Py] ki [PPha] 

ks iPPhz]  
MeReO(mtp)Py* • MeReO(mtp)PPh3 

Provided k-5[Py] » k^lTPhs] and lc8[Py] » kgPPhs] (both of which are valid since Py 

substitutions are so much faster than those of phosphines) the rate equation would be 

= I Mi + ^5^7 [PPh3 ] 1 ^ pyieReQ(n^tp)py] x [PPhj ] (13) 
[ k_8 k_5[Py] J 

Because the two isomers exist in a 9:1 equilibrium ratio, kg/k^ = 0.1. When the leading term 

was thought to be the value of k^, its value was given as 6.27 L mol"' s"' . With these values 

we arrive at kg = 63 L mol"' s"'. This is quite comparable to the value of ks; both rate 

constants represent the displacement of a pyridine complex with triphenylphosphine, and it is 

not unreasonable that they would be similar in value. 

Recall earlier that the most reasonable interpretation of the 90/10 product ratio of the 

MeReO(mtp)(Me2bpy) isomers was that the two pyridine isomers had the same reactivity. 

Our supposition that MeReO(mtp)(4-Bu'C5H4N)* and MeReO(mtp)(4-Bu'C5H4N) react with 

Meabpy at about the same rate is validated by reanalysis of the data given in the immediately 

preceding paragraphs. 
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Summary' A substantial family of the compoimds MeReO(mtp)X (X = pyridine, 

phosphine) react with phosphines (Y) in two stages, via a reaction scheme in which an 

intermediate can be detected. It is a stereoisomer of the product. A turnstile mechanism has 

been proposed for each stage of the substitution process, because it accounts for isomer 

formation at each stage, while allowing for the principle of microscopic reversibility to be 

observed. 
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Table S-1. UV-visible spectra of MeReO(mtp)-L complexes 

L (e) X /nm (e) X /nm (e) X /nm 

PPhj 190 (606) 2700 (340) 

PMePhi 189 (606) 3000(341) 

PMe2Ph 212(594) 3000(341) 

PCyPhz 220 (600) 3000(341) 

PCyzPh 133 (605) 1700 (347) 

PCy3 175 (606) 2200 (347) 

PPh3 1240(410) 

PCyPh2* 2740 (410) 

PCyPh2 1140 (410) 

PPh3 1300(400) 

PCyaPh* 2050 (400) 

PCyaPh 1150(400) 
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Table S-2. The 'H and ^'P NMR chemical shifts for selected MeReO(mtp)L compounds. 

Compound -HaHb-S'' -HaHb-S" Re-CHa' CHx' 3 . p  

PCyPh2 4.90 3.13 2.89 3.3 (IH) 31.92 

PCyPhz* 5.10 4.80 2.99 3.4 (IH) 28.89 

PCyzPh 5.05 3.39 2.95 2.8 (2H) 27.26 

PCyzPh* 5.16 4.69 3.16 
2.5 (IH) 
3.1 (IH) 

27.55 

PCys 5.04 3.39 3.03 2.5 (3H) 

PPh3 4.82 3.27 2.98 27.8 

PPh3* 5.10 4.89 3.08 25.92 

P(p-tolyl)3 4.88 3.33 3.06 26.50 

P(p-tolyl)3*' 5.14 4.90 3.16 

P(4-C1C6H,)3 4.85 3.25 2.83 

P(4-FC6H4)3 4.87 3.28 2.85 25.48 

P(4-MeOC6H4)3'' 4.94 3.39 3.10 

P(4-MeOC6H4)3*' 5.19 4.92 3.20? 

PMePhz 4.88 3.25 2.77 1.72 12.6 

PMe2Ph 4.89 3.21 2.69 
1.38 
1.44 

-0.94 

P(MeO)Ph2 4.93 3.15 2.89 3.18 124.6 

P(MeO)2Ph 4.94 3.14 2.95 
3.11 
3.38 

144.1 

4-'BU C6H4N 4.79 3.78 2.95 

4-'BU C6H4N» 5.21 4.89 2.97 

CftHsN 4.70 3.67 2.77 

a) Lente, et al. Inorg. Chem., 2000,39, 1311. 
b) doublet (ca. 12 Hz) 
c) doublets, except bottom three are singlets (not P containing ligands) 
d) doublets (from methyl group of boxmd ligand) 
e) broad multiplets (PCHx group on bound ligand) 
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Table S-3. Crystal data and structure refinement for compound MeReO(mtp)PMePh2. 

Empirical formula 

Formula weight 

Temperature 

Wavelength 

Crystal system 

Space group 

Unit cell dimensions 

Volume 

Z 

Density (calculated) 

Absorption coefficient 

F(OOO) 

Crystal size 

Theta range for data collection 

Index ranges 

Reflections collected 

Independent reflections 

Completeness to theta = 26.37° 

Absorption correction 

Transmission max/min 

Refinement method 

Data / restraints / parameters 

Goodness-of-fit on 

Final R indices [I>2sigma(I)] 

R indices (all data) 

Largest diff. peak and hole 

a=90° 

(3= 109.639(1)° 

y = 90° 

C2iH220PReS2 

571.68 

173(2)K 

0.71073 A 
Monoclinic 

C2/c 

a = 27.9997(17) A 
b = 11.1931(6) A 
c = 13.8873(8) A 
4099.1(4) A^ 

8 

1.853 Mg/m^ 

6.218 mm"' 

2224 

0.35 X 0.20 X 0.08 mm^ 

1.98 to 26.37°. 

-34<h<32,0<k<13,0<l<17 

18391 

4178 [R(int) = 0.0333] 

100.0% 

Empirical with SADABS 

1.000/0.641 

Full-matrix least-squares on F^ 

4178/0/237 

0.994 

Rl=0.0179, wR2 = 0.0373 

R1 = 0.0237, wR2 = 0.0384 

0.828 and -0.488 e.A"^ 
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Table S-4. Atomic coordinates (x 10'*) and equivalent isotropic displacement parameters 
(A^ X 10^) for M-PMePh2. U(eq) is defined as one third of the trace of the orthogonalized 

LAJ tensor. 

X y z U(eq) 

Re 3719(1) 8185(1) 1249(1) 20(1) 

P 3465(1) 9996(1) 1946(1) 21(1) 

S(l) 4335(1) 9418(1) 1089(1) 27(1) 

S(2) 4218(1) 6514(1) 1299(1) 29(1) 

0 3180(1) 7990(2) 253(2) 32(1) 

C(l)  3729(1) 7426(3) 2664(2) 31(1) 

C(2) 4897(1) 8574(3) 1052(2) 30(1) 

C(3) 4790(1) 7616(3) 266(2) 27(1) 

C(4) 5012(1) 7645(3) -496(2) 36(1) 

C(5) 4926(1) 6734(4) -1202(3) 50(1) 

C(6) 4610(1) 5794(4) -1178(3) 47(1) 

C(7) 4385(1) 5756(3) -439(2) 38(1) 

C(8) 4479(1) 6654(3) 297(2) 26(1) 

C(9) 3903(1) 10437(3) 3187(2) 32(1) 

C(10) 3396(1) 11295(2) 1127(2) 24(1) 

C(l l )  3700(1) 12298(3) 1433(3) 38(1) 

C(12) 3632(2) 13259(3) 746(3) 47(1) 

C(13) 3274(2) 13202(3) -210(3) 45(1) 

C(14) 2975(1) 12199(3) -506(3) 40(1) 

C(15) 3037(1) 11249(3) 157(2) 33(1) 

C(16) 2851(1) 9831(2) 2129(2) 23(1) 

C(17) 2488(1) 9030(3) 1542(2) 26(1) 

C(18) 2024(1) 8919(3) 1690(2) 31(1) 

C(19) 1919(1) 9597(3) 2428(2) 33(1) 

C(20) 2275(1) 10393(3) 3008(2) 34(1) 

C(21) 2736(1) 10524(3) 2858(2) 30(1) 
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Table S-5. Bond lengths [A] and angles [°] for MeReO(mtp)PMePh2. 

Re-0 1.684(2) 

Re-C(l) 2.132(3) 

Re-S(l) 2.2759(7) 

Re-S(2) 2.3213(7) 

Re-P 2.4537(7) 

P-C(9) 1.815(3) 

P-C(IO) 1.816(3) 

P-C(16) 1.829(3) 

S(l)-C(2) 1.849(3) 

S(2)-C(8) 1.782(3) 

C(2)-C(3) 1.488(4) 

C(3)-C(8) 1.394(4) 

C(3)-C(4) 1.396(4) 

C(4)-C(5) 1.378(5) 

C(5)-C(6) 1.383(5) 

C(6)-C(7) 1.375(4) 

C(7)-C(8) 1.394(4) 

C(10)-C(15) 1.386(4) 

C(10)-C(1I) 1.387(4) 

C(ll)-C(12) 1.407(5) 

C(12)-C(13) 1.371(5) 

C(13)-C(I4) 1.378(5) 

C(14)-C(15) 1.379(4) 

C(16)-C(17) 1.394(4) 

C(16)-C(2I) 1.396(4) 

C(17)-C(18) 1.388(4) 

C(18)-C(19) 1.384(4) 

C(19)-C(20) 1.377(4) 

C(20)-C(21) 1.383(4) 

O-Re-C(l) 

O-Re-S(l) 

115.81(11) 
119.88(8) 
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Table S-5 continued 

C(l)-Re-S(l) 123.73(9) 

0-Re-S(2) 106.51(7) 

C(l)-Re-S(2) 80.22(8) 

S(l)-Re-S(2) 91.37(3) 

0-Re-P 97.60(7) 

C(l)-Re-P 83.14(8) 

S(l)-Re-P 82.39(3) 

S(2)-Re-P 154.91(3) 

C(9)-P-C(10) 105.80(14) 

C(9)-P-C(16) 105.20(13) 

C(10)-P-C(16) 105.12(13) 

C(9)-P-Re 113.98(10) 

C(10)-P-Re 113.43(9) 

C(16)-P-Re 112.50(9) 

C(2)-S(l)-Re 111.82(10) 

C(8)-S(2)-Re 107.82(10) 

C(3)-C(2)-S(l) 115.2(2) 

C(8)-C(3)-C(4) 118.9(3) 

C(8)-C(3)-C(2) 120.5(3) 

C(4)-C(3)-C(2) 120.6(3) 

C(5)-C(4)-C(3) 120.5(3) 

C(4)-C(5)-C(6) 120.4(3) 

C(7)-C(6)-C(5) 119.9(3) 

C(6)-C(7)-C(8) 120.3(3) 

C(7)-C(8)-C(3) 120.0(3) 

C(7)-C(8)-S(2) 118.8(2) 

C(3)-C(8)-S(2) 121.1(2) 

C(I5)-C(10)-C(1I) 119.8(3) 

C(15)-C(10)-P 118.0(2) 

C(Il)-C(10)-P 122.2(2) 

C(10)-C(ll)-C(12) 118.9(3) 

C(13)-C(12)-C(ll) 120.6(3) 
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Table S-5 continued 

C(12)-C(13)-C(14) 120.0(3) 

C(13)-C(14)-C(15) 120.1(3) 

C(14)-C(15)-C(10) 120.6(3) 

C(17)-C(16)-C(21) 118.7(3) 

C(17)-C(16)-P 121.3(2) 

C(21)-C(16)-P 120.0(2) 

C(18)-C(17)-C(16) 120.5(3) 

C(19)-C(18)-C(17) 120.2(3) 

C(20)-C(19)-C(18) 119.7(3) 

C(19)-C(20)-C(21) 120.6(3) 

C(20)-C(21)-C(16) 120.3(3) 

Symmetry transformations used to generate equivalent atoms: 
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It/) 

CN 
O 

Figure S-1. The ORTEP of MeReO(mtp)PMePh2 with 30% probability elipsoids. All 

hydrogen atoms were included in the structure factor calculation at idealized positions and 

were allowed to ride on the neighboring atoms with relative isotropic displacement 

coefBcients. 
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Table S-6. Anisotropic displacement parameters (A^x 10^) for M-PMePh2. The anisotropic 
displacement factor exponent takes the form: a*^U' ^ + 2 h k a* b* U'" ] 

UH u22 y33 ^23 ^13 ^12 

Re 20(1) 19(1) 22(1) -1(1) 8(1) -1(1) 

P 22(1) 21(1) 20(1) -2(1) 6(1) -1(1) 

S(l) 30(1) 23(1) 30(1) -1(1) 15(1) -5(1) 

S(2) 31(1) 22(1) 40(1) 5(1) 19(1) 3(1) 

0 26(1) 37(1) 32(1) -11(1) 6(1) 2(1) 

C(1) 33(2) 31(2) 34(2) 7(1) 19(2) 0(1) 

C(2) 23(2) 37(2) 33(2) -2(1) 12(1) -6(1) 

C(3) 20(2) 38(2) 21(2) 3(1) 6(1) 6(1) 

C(4) 30(2) 53(2) 29(2) 7(2) 13(2) 5(2) 

C(5) 41(2) 88(3) 24(2) 1(2) 14(2) 19(2) 

C(6) 37(2) 64(3) 35(2) -18(2) 5(2) 13(2) 

C(7) 29(2) 38(2) 43(2) -9(2) 7(2) 8(2) 

C(8) 19(2) 32(2) 26(2) -1(1) 7(1) 5(1) 

C(9) 30(2) 37(2) 24(2) -8(1) 2(1) -1(1) 

C(10) 28(2) 19(1) 29(2) 1(1) 15(1) 2(1) 

C(l l )  45(2) 30(2) 39(2) -3(2) 15(2) -9(2) 

C(12) 68(3) 25(2) 60(2) -3(2) 37(2) -10(2) 

C(13) 68(3) 30(2) 48(2) 14(2) 37(2) 12(2) 

C(14) 48(2) 44(2) 29(2) 13(2) 14(2) 7(2) 

C(15) 37(2) 32(2) 30(2) 3(1) 10(2) -3(2) 

C(16) 27(2) 21(1) 21(1) 5(1) 9(1) 3(1) 

C(17) 26(2) 25(2) 27(2) 0(1) 9(1) 3(1) 

C(18) 25(2) 27(2) 40(2) 3(1) 11(1) 0(1) 

C(19) 30(2) 35(2) 42(2) 13(2) 20(2) 8(1) 

C(20) 36(2) 38(2) 32(2) 1(2) 17(2) 10(2) 

C(21) 31(2) 29(2) 29(2) -2(1) 8(1) 5(1) 
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Table S-7. Hydrogen coordinates ( x lO'*) and isotropic displacement parameters (A"x lO'^) 

forM-PMePhj. 

x y z U(eq) 

H(1A) 3409 7607 2775 46 

H(1B) 4012 7765 3223 46 

H(1C) 3771 6558 2644 46 

H(2A) 5140 9145 928 36 

H(2B) 5063 8210 1732 36 

H(4) 5223 8296 -529 44 

H(5) 5085 6753 -1708 60 

H(6) 4548 5174 -1673 56 

H(7) 4164 5115 -429 46 

H(9A) 4243 10531 3146 48 

H(9B) 3909 9821 3693 48 

H(9C) 3792 11197 3392 48 

H(l l )  3950 12337 2094 45 

H(12) 3837 13954 947 57 

H(13) 3232 13854 -670 53 

H(14) 2726 12162 -1168 48 

H(15) 2832 10558 -54 40 

H(17) 2558 8558 1038 31 

H(18) 1777 8376 1284 37 

H(19) 1602 9514 2534 40 

H(20) 2203 10856 3516 41 

H(21) 2976 11088 3252 36 
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Table S-8. 'H NMR Data for Reactions of MeReO(mtp)(4-Bu'C5H4N) and 4,4-dimethyl-

2,2'-bipyridine. 

1. Pure Me2bpy in CsDe. 

8.70 (s, 2H), 8.52 (d, 2H, J= 4.8 Hz), 6.61 (d, 2H J= 4.8 Hz), 1.91, (s, 6H) 

2. Pure 4-Bu'C5H4N in CeDg. 

8.55 (d, 2H, /= 1.6 Hz), 6.83 (d, 2H J= 6.0 Hz), 1.00, (s, 9H) 

MeReO(mtp)(4-Bu'C5H4N), isomer with Me trans to benzylic S: 

(8 aromatic protons, I methyl group, 1 pair of methylene protons - non equiv., 1 tert-butyl 

group) -[all but two aromatic peaks identified for M-(4-Bu'C5H4N)] 

7.84* (d, 2H, /= 6.8 Hz), 7.76 (d, IH, J= 8.4 Hz), 6.93 (m, IH), 6.52* (d, IH, J= 7.2 

Hz), 4.83 (d, IH, J= 12.8 Hz), 3.72 (d, lH,y= 8.0 Hz), 2.89 (s, 3H), 0.78 (s, 9H) 

* likely from the 4-rerr-BuC5H4N ligand's protons 

M-(4-tBuC5H4N)*; isomer with Me trans to phenolic S: 

5.14 (d, IH, J = 11.2 Hz), 4.83 (d, IH, J = 12.8 Hz), 2.92 (s, 3H), 

M-(Me2bpy)* (formed in 90% yield, 9 of 10 aromatic peaks identified) 

9.04 (d, IH, J = 6.0 Hz), 8.15 (d, IH, J = 5.6 Hz), 7.66 (m, IH), 7.32 (m, IH), 7.08 (s, IH), 

7.01 (m, 2H), 6.27 (d, IH, J = 6.0 Hz), 5.75 (d, IH, J = 6.0 Hz), 5.45 (d, IH, J = 11.6 Hz), 

4.72 (d, IH, J = 11.6 Hz), 3.47 (s, 3H), 1.98 (s, 3H), 1.55 (s, 3H) 

M-(Me2bpy) (formed in 10% yield; 7 aromatic resonance identified) 

8.92 (d, IH, J = 6.0 Hz), 8.41 (d, IH, J = 5.6 Hz), 8.14 (d, IH), 7.35 (d, IH, J), 7.32 (m, IH), 

6.26 (d, IH, J = 4.4 Hz), 5.66 (d, IH, J = 5.2 Hz), 5.28 (d, IH, J = 12.8 Hz), 4.16 (d, IH, J = 

12.4 Hz), 3.16 (s, 3H) 
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Figure S-2. Stacked NMR spectra showing the time evolution of the reaction between 10 

mM MeReO(mtp)PPh3 and 37 mM PCyPha. The intermediate does not rise to high 

concentrations, but its resonance can be seen at 5.11 ppm. 
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Figiire S-3. A plot showing the time evolution of the intensities (from integrating all of the 

spectra like the few shown in Figure 5, main text) for the reaction between 3.5 mM 

MeReO(mtp)P(4-ClC6H4)3 and 36 mM PCyPhi in CeDe at 25 °C; MeReO(mtp)PCyPh2 

(circles), MeReO(mtp)PCyPh2* (open squares) MeReO(mtp)P(4-ClC6H4)3 (triangles). The 

smooth curves represent the fitting to bi-exponential kinetics. 
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Figure S-4. A plot showing the time evolution of the intensities (from integrating all of the 

spectra like the few shown in Figure S-3) for MeReO(mtp)PPh3 reacting with PCyPhi; 

MeReO(mtp)PCyPh2 (circles), MeReO(mtp)PCyPh2* (open squares) MeReO(mtp)PPh3 

(triangles). The smooth curves represent the fitting to bi-exponential kinetics. 

A. • 
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Figure S-5. A plot of kobs versus [PMePha], comparing UV (open squares) and 'H NMR 

(circles). The NMR data are relatively imprecise because the reaction time is short compared 

to the time for acquiring the data. The spectrophotometric data give k = 0.28 L moP's"' at 

25.0 °C. 
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Figure S-6. Two reaction-time profiles firom 'H NMR kinetics for the between M-PPhs and 

MePhzP in C^De. The data has been fit to a single exponential equation which yields the first 

order rate constants of 1.07 x 10'^ s*' (squares) and 6.7 x 10'^ s"' (triangles). The conditions 

are, respectively: [Re-PPha] = 7.8 mM, [MePh2P] = 54 mM; [Re-PPha] = 2.0 mM, [MePh2P] 

= 30.6 mM and temperature = 298 K. 
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Figiire S-7. A series of stacked scans from RSM stopped-flow experiments done on the 

reaction of MeReO(mtp)(4-Bu'C5H4N) and MePhaP. The scans are 1.1 sec apart, although 

many more were collected. 
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Figure S-8. A stopped-flow kinetic trace extracted at 344.4 mn for the reaction between 0.24 

mM MeReO(mtp)(4-Bu'C5H4N) and 2.7 mM PMePha, in benzene. There is also 3.3 mM 

NC5H4-4-BU' present. 
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Figure S-9. Eyring plots for successive reactions, MeReO(mtp)(4-Bu'C5H4N) and PMePha 

(first stage) and MeReO(nitp)PMePh2* and PMePhi- The values of AH* are 17.7 and 18.2 kJ 

mol"'; of -127 and -151 J BT' mol"'. 
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Figure S-10. The observed rate constant, kobs, versus [CyPhaP] for the reaction of 

monomerization of the dimer. The line was generated for the equation ka[CyPh2P] + 

kb[CyPh2P]'. 
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Figure S-11. The figure displays, as a function of ligand concentration, the calculated 

amount of total monomer (M-L) that is formed via the DL2 pathway. 
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Figure S-12. A plot of log k vs the stereoelectronic parameter Xd for the phosphines, for 

reactions with various phosphines as the leaving group X upon reaction the the entering 

ligand PMe2Ph. the slope of the linear correlation, showing that the X groups that are the 

weaker Lewis bases are the best leaving groups. 
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Figure S-13. A Hammett plot (log k) against substituent constant (CT) multiplied by three, for 

the reactions of MeRe)(mtp)(P(4-XC6H4)3) and MePh2P. Rate constants were determined in 

benzene at 25 °C. The slope and reaction constant (p) is 1.3. 
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CHAPTER n. SYNTHESIS AND CHARACTERIZATION OF A 
COMPOUND CONTAINING THE NOVEL (0=Re)2(n-0H) UNIT 

A paper to be submitted Inorganic Chemistry. 

David W. Lahti, Ilia Guzei, and James H. Espenson 

Abstract 

Treatment of {CH3Re(0)(mtp)}2 (mtpH2 = 2-(mercaptomethyl)thiophenol) with 

tetra-n-butylammonium chloride in benzene which has been layered over water results in the 

formation of [Bu"4N][{MeReO(mtp)}2(|a-OH)], which was characterized 

crystallographically. The hydroxo group is shared equally between the two rhenium atoms, 

with Z Re-0(H)-Re = 99.2(2)°. The product is dark pink in color and is insoluble in water 

and sparingly soluble in benzene. Bond distances are Re=0 168.0(4) pm and Re-((i-OH), 

218.5(3) pm. 

Introduction 

A dithioIato(oxo)rhenium(V) dimer, {MeReO(mtp)}2,1, was recently prepared and 

contains a Re2S2 core, is a starting point for this work.' Figure 1 shows its structural formula, 

along with formulas for several of its derivatives. Formally each of these sulfur atoms 

bridges one rhenium and forms a covalent bond to the other, but the four Re-S bond 

distances are hardly different: d(Re-S)cov = 236.1,236.6 pm as compared to d(Re-S)br = 

238.8,239.4 pm. Also, 1 retains its structi^al integrity in non-coordinating solvents 

(benzene, toluene, chloroform, etc.). The two monomeric units are held together by the 

coordinate bridge bonds, which are present presumably to satisfy the requirement of the 
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coordination number and electron density. Indeed, the reaction of 1 with a Lewis base L, 

We have shown that 1 and its monomeric forms catalyze oxygen-transfer reactions, 

e.g., from pyridine-N-oxides to phosphines."* With an eye toward developing this catalytic 

chemistrv in semi-aaueous media, we exolored certain combinations that resulted in the ^  4  ' A  

synthesis of a new compound, described herein. Compounds of rhenium that contain a 

bridging hydroxide ligand are rare. If a molecule can be characterized with a ligand on each 

rhenium atom of 1, while not causing cleavage of the Re-S coordinate bonds, it helps 

support one of the intermediate that has been prosposed for the monomerization of 1.^'^ 

such as pyridine or a phosphine, gives rise to mononuclear compounds MeReO(mtp)L.^"^ 

0 

0 

{MeReO(mtp)}2 1 MeReO(mtp)PPh3 

MeReO(mtp)Py [{MeReO(mtp) } 2 (|J.-OH)]" 2 

Figure I. Selected dithiolato based rhenium compounds. 
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Experimental 

Methyltrioxorhemuin(VII), MTO, was prepared from sodium perrhenate according to 

a published procedure.^ The dimeric complex {MeReO(mtp)}2 as described previously from 

methyltrioxorhenium(VII) and 2-mercaptomethylthiolphenol (mtpHi), reported earlier.' 

Solvents and reagents were purchased, and used as received. Typically 4 mg of 1 dissolved 

was dissolved in 5-10 ml of benzene has about and 20-40 mg of tetra-n-butylammonium 

chloride was added, and then the solution was layered over 8-12 ml water. 

Results and Discussion 

A benzene solution of yellow-brown 1 containing excess tetra-n-butylammonium 

chloride was layered over water. A solid formed and dichroic red-green crystals suitable for 

X-ray diffraction grew at the interface over two days. The diffraction study showed that an 

ionic compound had formed, [Bu"4N][{MeReO(mtp)}2(|a.-OH)], 2, shown in figure 2, along 

with selected bond lengths and angles. Full details of the X-ray refinement of 2 are given in 

the Supporting Information. Figure S-1 includes the counter cation in the structure. The 

chemical equation is shown, eq 1. The crystallographic information is summarized in tables 

S-l-to-5. 

1 + Bu"4NC1 + H2O ^ 2 + HCi en 

No structure of this type (0=M)2(p-0H) type appears to have been reported. This 

new complex has a C2 symmetric axis down the bridging hydroxo ligand; the Re-0 bond 

lengths are 218.4 pm whereas the terminal rhenium-oxo bonds are 168.0 pm in length. The 

presence of the cation, tetra-n-butylammonium, in the structure fiirther confirms the need for 
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Figure 2. Perspective view of the rhenium compound 2 with themal ellipsoids at the 40% 

probablity level. Selected bond lengths (pm) and angles (deg): Re(l)-0(1), 168.0(4); 

Re(l)-C(l), 215.3(5); Re(l) -0(2), 218.5(3); Re(l) -S(l), 243.30(13); Re(l)-S(2), 

233.69(13); S(l) -C(2), 183.9(5); S(2)-C(8), 178.7(5); 0(1)-Re-C(l), 97.3(2); 

0( l ) -Re-0(2) ,  168.75(12);  C(l)-Re-0(2) ,  80.81(19);  0(1)  -Re-S(2) ,  102.35(12);  C(l)  

-Re-S(2), 84.40(17); S(l)-Re-S(1A), 77.63(5); Re(l)-S(l)-Re(lA), 86.36(4); Re(l) 

-0(2)-Re(lA), 99.89(17); C(8)-S(2)-Re(lA), 107.36(16). 
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an anion; hydroxide. Table 1 shows bond lengths and related bond angles for some 

multinuclear rhenium compounds that contain either a bridging hydroxide or oxo ligand, as 

well as other useful information. The bridging hydroxo bond length range from 200—230 

pm, while bridging oxo groups have bond lengths of 190 pm or less. This data further 

supports a bridging hydroxide unit in compound 2. 

The Re=0 distance in 2 was 168.0 pm, essentially the same as in 1 (167.4 pm) and in 

other mononuclear rhenium compounds.The Re-S(l) bond lengths in the four 

membered ring have grown to 2.45 A from 2.38 A in 1. The most striking change that occurs 

Table 1. Various rhenium compounds that contain a bridging oxo or hydroxo ligand(s). 
Compounds Re-0 

(pm) 
Re-OH 
(pm) 

Re-Re 
(pm) 
a bond ?' 

reference 
and ox. state 

[Re4(C6H5NCOCH3)6(Cl)(n-0)(n-OH)-(MeOH)3][Re04]2 

Re(3)-0(6)-Re(l) angle 136(1) 194(2) 
188(2) no 

Re(lII) 

Re(4)-0(10)-Re(l) angle 123(1) 206(3) 
229(2) no 

[(H-0) {CH3Re(0)2(8-oxyquinoline)} 2] 
y 

Re-0(1)-Re angle 180 187.1(1) no Re(VU) 

[Re2(n-0)04(CH2CMe3)4] 10 

Re(l)-0(5)-Re(2) angle 166.3(5) 194.0(11) 
189.6(11) no 

Re(VII) 

[Re:(n-0)20i(CH2CMe3)4] IL 

Re(l)-0(6)-Re(2) angle 85.8(7) 196.7(17) 
186.1(18) 

260.6(1) 
yes 

Re(V) 

Re(l)-0(5)-Re(2) angle 83.3(7) 194.6(18) 
197.7(18) 

[Re2(n-CH2)(n-0)(0)2Me4{PMe3)2] 11 

Re - 0 - Re 197.1(14) 
187.8(14) 

254.8(2) 
yes 

Re{VI) 

[Re2(^-CH2)(n-0)(0)2Me4] 11 

Re - 0 - Re 190.2(16) 
193.9(17) 

265.2(2) 
yes 

Re(VI) 

r(u-0H)|MeRe(0)(SCH2C6H4S)hl b 

Re - 0 - Re angle 99.89(17) 218.5(3) 337 
no 

Re(V) 

a) stating whether a bond between two rhenium atoms exists 
b) this paper 
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upon coordination of the hydroxide ligand is the collapsing of the Re—Re distance which 

becomes 334 pm from 368 pm in 1. To achieve this, the Re-S-Re angle has collapsed to 

86° from 101° while the S—S distance actually grows to 3.063 A from 2.896 A in 1. 

However, the Re—Re distance remains too long to be considered to have a bonding 

interaction between the rhenium atoms.The hydroxide ligand binds trans to the terminal 

rhenium-oxo bonds, giving an "A" frame type structure consisting of RezOs. Further, 2 

features distorted octahedral symmetry around the rhenium with Z Re-0(H)-Re = 99.2(2)°. 

The dihedral angle of the ReiSa core goes from 19.2° in 1 to 41.2° in 2. 

Chloride ions are in fact known to monomerize 1 into [Bu"4N][MeReO(mtp)Cl]. In 

the presence of water, however, the dimeric structure of 1 is not disrupted. Curiously, 1 does 

not react with Bu"4N0H in benzene, suggesting a role for chloride in the process. We note 

that partially-opened dimeric structures have been found^ and postulated;''* ligated but 

unopened derivatives of 1 lie on the pathway to monomer formation.^'^ An attempt was made 

to prepare a compound analogous to 2, but with a |a-SH group. No reaction analogous to eq 

1 occured, however, on substituting H2S for water. 

Mechanistic studies of monomerization of 1 with numerous Lewis bases support the 

existence of two intermediates (designated: DL-dimer with one ligand, DLz-dimer with two 

ligands) on the pathway toward monomerization. Kinetic evidence aside, the 

[{MeReO(mtp)}2(DMSO)] adduct, which has been previous reported," supports the DL type 

intermediate inferred from kinetics studies. Compound 2 now has a structure that is 

reminiscent of DL2, while not stoichometrically achieved, it shows that each Re atom can 

bind to a ligand simultaneously: in this case, it just happens to be the same ligand. 
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Figure S-1. Perspective view of the rhenium compound 2 with themal ellipsoids at the 40% 

probablity level. The tetra-n-butyl ammonium cation is also shown. 
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Table S-1. Crystal data and structure refinement For 2. 

Empirical Formula 
Formula weight 
Temperature 
Wavelength 
Crystal system 
Space group 
Unit cell dimensions 

Volume 
Z 
Density (calculated) 
Absorption coefficient 
F(OOO) 
Crystal size 
Theta range For data collection 
Index ranges 
Reflections collected 
Independent reflections 
Completeness to theta = 26.37° 
Absorption correction 
Max. and min. transmission 
Refinement method 
Data / restraints / parameters 
Goodness-oF-fit on 
Final R indices [I>2sigma(I)] 
R indices (all data) 
Largest difF. peak and hole 

ot= 90° 

(3= 117.528(10)° 
7 = 90° 

C32 H55 N O3 Rea S4 
1002.41 
173(2)K 
0.71073 A 
Monoclinic 
P2/C 

3=10.8441(8) A 
b = 9.2669(6) A 
c = 20.9735ri3) A 
1869.0(2) A^ 
2 
1.781 Mg/m^ 
6.725 mm"' 
984 
0.40 X 0.40 X 0.20 mm^ 
2.12 to 26.37° 
- 1 3 < h < 1 2 , 0 < k ; < l l , 0 < l < 2 6  
16529 
3830 [R(int) = 0.0354] 
100.0 % 
Empirical with SADABS 
0.3465 and 0.1739 
Full-matrix least-squares on F^ 
3830/0/ 194 
1.005 
Rl = 0.0293, wR2 = 0.0855 
R1 = 0.0354, wR2 = 0.0887 
1.836 and-1.653 e.A'^ 
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Table S-2. Atomic coordinates (x lO"*) and equivalent isotropic displacement parameters 
(A^ X 10^) for 2. U(eq) is defined as one third of the trace of the orthogonalized U'^ tensor. 

X y  z U(eq) 

Re(I) 6732(1) 5808(1) 7841(1) 27(1) 
S(l )  4871(1) 6791(1) 6741(1) 28(1) 
S(2) 7613(2) 4420(1) 7214(1) 36(1) 
0(1) 7955(4) 7088(4) 8218(2) 35n)  

0(2) 5000 4291(4) 7500 32(1) 
N 10000 447(6) 7500 27(1) 
C(l)  7688(7) 4202(6) 8668(3) 44(2) 
C(2) 4864(6) 5728(6) 5999(3) 36(1) 
C(3) 6184(6) 5993(5) 5944(3) 35(1) 
C(4) 6148(6) 6813(6) 5379(3) 37(1) 
C(5) 7345(6) 7062(6) 5320(3) 40(1) 
C(6) 8610(6) 6517(6) 5833(3) 36(1) 
C(7) 8668(6) 5735(5) 6405(3) 34(1) 
C(8) 7445(6) 5462(5) 6462(3) 32(1) 
C(9) 8802(6) -538(5) 7410(3) 33(1) 
C(10) 7446(6) 181(6) 7297(3) 38(1) 
C(l l )  6352(7) 315(7) 6538(3) 50(2) 
C(12) 4983(7) 850(7) 6493(5) 65(2) 
C(13) 9568(5) 1451(5) 6853(2) 30(1) 
C(14) 9318(7) 752(6) 6152(3) 45(2) 
C(15) 8665(8) 1888(8) 5548(3) 62(2) 
C(16) 8497(11) 1404(12) 4845(4) 99(3) 
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Table S-3. Bond lengths [A] and angles [°] for 2. 

Re(l)-0(1) 1.680(4) 
Re(l)-C(l) 2.153(5) 
Re(l)-0(2) 2.185(3) 
Re(l)-S(2) 2.3369(13) 
Re(l)-S(l) 2.4330(13) 
Re(l)-S(l)#l 2.4541(12) 
S(l)-C(2) 1.839(5) 
S(l)-Re(l)#l 2.4541(12) 
S(2)-C(8) 1.787(5) 
0(2)-Re(l)#l 2.185(3) 
N-C(9) 1.526(6) 
N-C(9)#2 1.526(6) 
N-C(13)#2 1.530(6) 
N-C(13) 1.530(6) 
C(2)-C(3) 1.507(8) 
C(3)-C(8) 1.385(8) 
C(3)-C(4) 1.393(7) 
C(4)-C(5) 1.381(7) 
C(5)-C(6) 1.390(8) 
C(6)-C(7) 1.378(8) 
C(7)-C(8) 1.408(7) 
C(9)-C(10) 1.530(7) 
C(10)-C(ll) 1.486(8) 
C(11)-C(I2) 1.525(9) 
C(13)-C(14) 1.511(7) 
C(14)-C(15) 1.545(9) 
C(15)-C(16) 1.470(10) 

0(1)-Re(l)-C(l) 97.3(2) 
0(l)-Re(l)-0(2) 168.75(12) 
C(l)-Re(l)-0(2) 80.81(19) 
0(1)-Re(l)-S(2) 102.35(12) 
C(l)-Re(l)-S(2) 84.40(17) 
0(2)-Re(l)-S(2) 88.55(7) 
0(1)-Re(l)-S(l) 108.07(12) 
C(l)-Re(l)-S(l) 154.44(18) 
0(2)-Re(l)-S(l) 73.72(7) 
S(2)-Re(l)-S(l) 92.76(5) 
0(1)-Re(l)-S(l)#l 96.06(12) 
C(l)-Re(l)-S(l)#l 97.26(16) 
0(2)-Re(l)-S(l)#l 73.29(7) 
S(2)-Re(l)-S(l)#l 161.17(5) 
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S(l)-Re(l)-S(l)#l 77.63(5) 
C(2)-S(l)-Re(l) 106.22(19) 
C(2)-S(I)-Re(l)#l 112.16(18) 
Re(l)-S(l)-Re(l)#l 86.36(4) 
C(8)-S(2)-Re(l) 107.36(16) 
Refl)-0(2VRe(l)#l 99.89(17) 
C(9)-N-C(9)#2 106.6(5) 
C(9)-N-C(13)#2 111.6(3) 
C(9)#2-N-C(13)#2 111.1(3) 
C(9)-N-C(13) 111.1(3) 
C(9)#2-N-C(13) 111.6(3) 
C(13)#2-N-C(13) 105.1(5) 
C(3)-C(2)-S(l) 110.2(4) 
C(8)-C(3)-C(4) 119.3(5) 
C(8)-C(3)-C(2) 120.8(5) 
C(4)-C(3)-C(2) 119.9(5) 
C(5)-C(4)-C(3) 120.7(5) 
C(4)-C(5)-C(6) 120.1(5) 
C(7)-C(6)-C(5) 119.8(5) 
C(6)-C(7)-C(8) 120.1(6) 
C(3)-C(8)-C(7) 119.9(5) 
C(3)-C(8)-S(2) 123.0(4) 
C(7)-C(8)-S(2) 117.1(4) 
N-C(9)-C(10) 117.4(4) 
C(ll)-C(10)-C(9) 115.9(5) 
C(10)-C(1I)-C(12) 111.5(6) 
C(14)-C(13)-N 116.5(4) 
C(13)-C(14)-C(15) 108.3(5) 
C(16)-C(15)-C(14) 114.4(7) 

Symmetry transformations used to generate equivalent atoms: 
#1-x+l,y,-z+3/2 #2-x+2,y,-z+3/2 
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Table S-4. Anisotropic displacement parameters (A"x 10^) for 2. The anisotropic 
displacement factor exponent takes the form: [ h^ a*"U" + ... + 2 h k a* b* U'^ ] 

u" u'^ 

Re(l) 34(1) 24(1) 31(1) 4(1) 22(1) 1(1) 
S(l) 36(1) 26(1) 30(1) 0(1) 23(1) 1(1) 
S(2) 49(1) 26(1) 48(1) 6(1) 35(1) 9(1) 
0(1) 40(2) 34(2) 36(2) 3(2) 23(2) -2(2) 
0(2) 41(3) 21(2) 44(3) 0 28(3) 6 
N 35(3) 18(2) 32(3) 0 20(3) 0 
C(l) 46(3) 45(3) 50(4) 22(3) 30(3) 12(3) 
C(2) 39(3) 44(3) 35(3) -11(2) 26(3) -6(2) 
C(3) 48(3) 31(3) 39(3) -5(2) 30(3) 0(2) 
C(4) 42(3) 46(3) 26(3) -6(2) 20(2) 1(2) 
C(5) 54(3) 47(3) 29(3) -3(2) 29(3) -3(3) 
C(6) 45(3) 37(3) 40(3) -6(2) 30(3) -6(2) 
C(7) 39(3) 37(3) 38(3) -10(2) 30(3) -4(2) 
C(8) 43(3) 23(2) 41(3) -5(2) 30(3) -1(2) 
C(9) 41(3) 22(2) 46(3) 0(2) 28(3) -5(2) 
C(10) 48(3) 33(3) 49(3) 3(3) 36(3) -2(2) 
C ( l l )  53(4) 47(3) 52(4) 2(3) 27(3) -12(3) 
C(12) 35(4) 56(4) 87(6) -1(4) 14(4) 11(3) 
C(13) 35(3) 27(2) 30(3) 4(2) 18(2) 0(2) 
C(14) 51(4) 53(4) 38(3) 0(3) 27(3) -1(3) 
C(15) 65(4) 84(5) 46(4) 16(3) 33(3) 4(4) 
C(16) 119(8) 123(8) 50(5) 17(5) 34(5) 14(7) 
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Table S-5. Hydrogen coordinates (x 10'') and isotropic displacement parameters (A^x 10^) 
for 2. 

x y z U(eq) 

H(2) 5000 3266 7500 39 
H(1A) 8631 4512 9006 66 
H(1B) 7733 3282 8448 66 
H(1C) 7137 4080 8925 66 
H(2A) 4785 4689 6083 43 
h(2B) 4052 6003 5542 43 
H(4) 5290 7206 5031 44 
H(5) 7305 7607 4927 47 
H(6) 9433 6683 5790 44 
H(7) 9535 5379 6762 40 
H(9A) 9130 -1158 7842 39 
H(9B) 8588 -1180 6994 39 
H(IOA) 7059 -377 7566 46 
H(IOB) 7667 1160 7510 46 
H(IIA) 6202 -637 6299 60 
H(llB) 6668 996 6280 60 
H(12A) 4743 267 6809 97 
H(12B) 4245 766 5996 97 
H(12C) 5081 1863 6643 97 
H(13A) 8705 1955 6775 36 
H(13B) 10300 2193 6975 36 
H(14A) 8683 -82 6048 54 
H(14B) 10208 401 6185 54 
H(15A) 7742 2162 5497 74 
H(I5B) 9256 2763 5693 74 
H(16A) 9413 1209 4878 149 
H(16B) 8029 2159 4486 149 
H(16C) 7936 521 4702 149 
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CHAPTER in. THE CHEMISTRY OF CHELATING PHOSPHORUS 

Introduction 

Molecules containing two phosphorus atoms are of interest since they can often act as 

chelating ligands or as bridging ligands, which can link two metal centers so as to form 

binuclear complexes.'"^ The ligands Ph2PCH2PPh2 [bis(diphenylphosphino)methane] (or 

dppm) and Ph2P(CH2)2PPh2 [bis(diphenylphosphino)ethane] (or dppe) are two very popular 

bidentate ligands. Two similar derivatives, with less steric demands,^ have the phenyl groups 

(Ph) replaced with methyl groups (Me) to form Me2PCH2PMe2, dmpm, and 

Me2P(CH2)2PMe2, dmpe. Advantages of the dppm and dppe ligands is their low unit cost 

and less sensitivity to oxygen. These ligands are shown below. 

LIGANDS TO Re(V) 

A paper to be published in Inorganic Chemistry 

David W. Lahti and James H. Espenson 

dppm dppe 

dmpm dmpe 

Actually, dppm is well known for bridging two metals in a complex, in fact often a 

pair of them will bridge two metals together, eq 1."^ Also, dppe and dppm can act as 

monodentate ligands with one phosphorus bound to a metal, leaving one uncoordinated. An 
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example is shown, eq 2, along with the synthetic route, of monodentate binding.^ These 

molecules can also chelate to a single metal center, to form a ring, a 4-membered one for 

dppm^ and a 5-membered one for dppe/ 

A 
Ph2P PPh2 

CI—Pd Pd—CI 

Ph2Pv PPh2 

(1) 

(NBu4)2[PtCl(C6F5)3] 

+ H2CC12 
F5C6 

Pt 

n -

P h a P v / \  P P h 2  PPho (2) 

1 , 2  \ / l , 2  

Given the 5-coordinate and dimeric structure of {CH3(0)Re(mtp)}2, D, where mtp is 

the dianion of 2-methylmercaptothiolphenol (H2mtp), it is feasible to add a bidentate ligand 

to bridge these rhenium atoms together; each rhenium would become 6-coordinate. 

Typically, when D reacts with Lewis base ligands (L), such as phosphines or pyridines, to 

form two mononuclear CH3(0)Re(mtp)L or M-L complexes, the final product remains 5-

coordinate. The reaction of D and PPhs is shown, eq 3. For monomerization not to occur. 

0 

2PPh, 

M-PPh3 
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the pair of Re-S must remain in tact. Reactions were performed with D and dppe and dppm, 

and also between the monomeric form, CH3ReO(mtp)(4-Bu'C5H4N), formed from D and 4-

rerr-butylpyridine. These compounds are shown below. 

Experimental 

Methyltrioxorhenium(VII), MTO, was prepared from sodium perrhenate according to 

a published procedure.^ The dimeric complex {MeReO(mtp)}2 as described previously from 

methyltrioxorhenium(VII) and 2-mercaptomethyIthiolphenoI (mtpHa), reported earlier.' It 

was treated with ca. 10 fold excess pyridine to produce monomeric p>Tidine adducts. 

Solvents and reagents were purchased, and used as received. A Bruker DRX-400 

spectrometer was used to record NMR spectra. Shimadzu 3101 and 2501 

spectrophotometers were used for optical spectra. Most reactions were performed in CeDe. 

Results 

General Observations. When dppm and dppe are treated with yellow D, the 

solution rapidly turns green. Virtually the same green color formed when monodentate 

phosphines, such as PPhj, reacts with D, see eq 3. These reactions are quite rapid, as the 

green color forms on mixing. Clearly, Re-P bonds are formed in both case, just as with 

PPh3, the structure of which has been previously reported.'® 

MeReO(mtp)(4-Bu^C5H4N) 
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Monomelic pyridine complexes, like CH3Re(0)(mtp)(4-tBuC5H4N), (M-tBuPy), can 

be treated with dppm and dppe as well. It has been shown that phosphorus donating ligands 

readily displace pyridine Iigands.'°''' The reactions with dppm give a single product, 

althought when D is used, diere is evidence for an intermediate, but that species has not be 

identified. For dppe, the results are not completely clear, however, similarities exist in the 

spectra of the product whether D or M-tBuPy were used. 

Reaction Stoichiometry. The reaction stoichiometry of D with these bidentate 

ligands is different. Each D reacts with two dppm molecules and just one dppe molecule, for 

a complete reaction. This was confirmed with 'H NMR for dppm. For dppe the 

stoichiometry of the reaction was determined using Job's method of analysis.'^ This ratio of 

one dppe for every D molecule is confirmed by figure S-1. This plot shows a maximum 

value of absorbance at 1 mM D. Since the total concentration of dppe and D must always 

sum to 2 mM, [D] and [dppe] are equal at this point. This confirms the stoichiometry of 1:1, 

as under these conditions a maximum amount of product is formed, which absorbs more at 

this wavelength. Thus, each phosphorus from dppe binds to a rhenium atom; NMR 

studies show no chemical shifts that correspond to uncoordinated phosphorus atoms. 

Further, no evidence exists to support rhenium remaining 4-coordinate in these 

dithiolatorhenium(V) compounds, an ancillary ligand seems to always be necessary. For 

dppm, each takes one rhenium center and thus two binding modes are possible, or t]". 

NMR Studies. The & ^'P NMR studies for the dppm reactions are quite straight 

forward. The dppm ligand reacts with D to yield only one product, by 'H NMR, whether D 

or M-tBuPy is used. The adduct formed CH3Re(0)(mtp)dppm or M-dppm is similar to the 

CH3Re(0)(mtp)L or M-L type complexes that have been described in detail elsewhere. 
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especially when L = MePh2P/' This is notable from the 'H NMR data in table 1, for these 

complexes. The 'H NMR is shown in figure 1. 

This product, M-dppm, is found to have five NMR signals, accounting for seven 

protons, in the range from 2.8 - 5 ppm; two doublets from the methylene protons of the 

dithiolato ligand, one doublet peak attributable to the Re-Me resonance (split once by 

phosphorus - with three times the integration) and an A B quartet. The A B quartet signals 

can be assigned to the protons of the methylene bridge of dppm. Table 1 lists the 'H NMR 

peaks along with coupling constants for M-dppm in CeDe and in DgC? and for M-PMePha 

(in CaDe). 

The ^'P NMR spectrum of M-dppm is shown in figure S-2. It is quite noticeable that 

the peaks are sharp, despite the fact that some excess free dppm is present. This data is 

Table 1. 'H NMR of dithiolato rhenium(V) complexes of dppm and PMePhi-

Compoimd (solvent) 

Group M-dppm (CeDe) M-dppm (CyDg) M-PMePh2(C6D6) 

5 
•j (Hz) 

6 
'j (Hz) 

5 
'j(Hz) 

(H-H) 
5 

(H-H) (P-H) 
6 

(H-H) (P-H) 
5 

'j(Hz) 

(H-H) 

SCi/aHbC' 4.86 11.2 4.80 11.2 4.88 11.6 

SCKMC 3.17 11.6 3.08 11.6 3.25 11.2 

Re-C^s" 2.92 8.4 2.81 8.4 2.77 8.8 

PC/fcHdP' 3.83 15.0 9 3.80 14.4 9 

PCHc^dP' 3.59 14.8 9 3.55 14.6 9 

a) doublet from diastereotopic hydrogen oa a methylene group 
b) doublet from phosphorus 
c) one part of an A B quartet 
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9^ ^v<04e 
— Ok ^ —OI^^ «9<e^<N 
«3r<» Anr^r^ i/ii/iintn 

»<l "O »0 

II SS\I \l/r  ̂

J 

Figure 1. The 'H NMR spectrum of M-(Ti'-dppin) in CyDg over the range from 2.6 to 5.1 

ppm. The peaks are listed in table 1. The A B quartet is between 3.5 and 3.9 ppm and the 

peaks are described in table 1. The integration markers confirm seven protons, three of 

which are from a methyl group, and four from distinctly different single protons. 
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shown in table 2, for this compounds, as well as for some compoimds with phoshorus 

ligands, most with dppm. The complex, M-dppm, has two doublets that are about 45 ppm 

apart; one for a free phosphorus and one for a bound phosphorus atom. A NMR spectrum 

without proton decoupling causes the doublet at -25 ppm (assigned to the uncoordinated 

phosphorus) to appear as a doublet of triplets. This shows that the protons of the dppm 

methylene protons are quite similar to each other, while curiously they don't cause noticeable 

coupling 10 the signal from the phosphorus atom bound to rhenium, at ca. 20 ppm. 

To confirm which couplings originate from phosphorus, especially of the A B quartet, 

phosphorus decoupled NMR ('H NMR {^'P}) was done. These experiments caused 

changes in the spectra, especially when the 20 ppm peak was decoupled, (the ^'P NMR sigr^al 

assigned the coordinated phosphorus of dppm). Figure S-3 shows the result from this 'H 

{^'P} NMR experiment, and it is clear the A B quartet has less coupling, and the doublet of 

the Re-CHs resonance is now a singlet, further confirming that the methyl group on rhenium 

is a doublet from a bound phosphorus atom. When the peak at -25 ppm is decoupled, the 

signal from the dppm protons, while broader now, still shows the same coupling featiu-es, 

figure S-4. This indicates that the uncoordinated phosphorus is not causing coupling. 

Moving the decoupling fiuther upfield to -150 ppm, figure S-5, yields 'H NMR spectra quite 

similar to that of figure I, the one with no decoupling at all. 

Isomerization. When M-tBuPy is used as a source of rhenium, there are actually 

two isomers present, as determined by 'H NMR; one form is quite minor (about 10%). 

However, when these react with dppm, only one product is formed. Thus, despite lack of 

mechanistic and kinetics studies, there is likely an intermediate at work here, given the 
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Table 2. NMR shifts for various phosphorus containing species. 

Complex •^'P NMR ppm 'J(P-P) Hz reference 

19.99 64 
Me(0)Re(mtp)(dppm)" 

-25.26 65 
this report 

-25.26 65 
this report 

19.93 66 
Me(0)Re(mtp)(dppm)'' 

-25.12 66 
this report 

-25.12 66 
this report 

Me(0)Re(mtp)(PMePh2) 12.6' 0 #8 

6.60 47 
[(F5C6)3Pt(Ti'-dppni)]* 

-28.83 47 
#5 [(F5C6)3Pt(Ti'-dppni)]* 

-28.83 47 

8.58 35 
[(F5C6)3Pt(Ti'-dppe)]-

-12.89 35 
#5 [(F5C6)3Pt(Ti'-dppe)]-

-12.89 35 

dppm (free)" -21.5 this report 

a) CfiDs 
b) DiQ 
c) singlet (no coupling) 

results found previously for ligand exchange reaction with these dithiolatorhenium(V) 

compounds." 

A bridging adduct, with dppe. The results from 'H NMR experiments of the dppe 

reactions, while not difficult to explain, do not offer as much help in assigning a firm 

structure to the product, figure S-6. The 'H NMR shows two sets of peaks that can be 

assigned to the Re-CHa group and two sets of doublets, one around 5 ppm and one around 

3.3 pnm, figure S-5. The peaks assigned to the Re-CHs have an unusual triplet type shape, 

and are considered to be "virtually coupled" with the phosphorus atoms of dppe bridging the 

rheniimi centers.'^ These peaks are often variable as to which peak is larger. The peaks at 

3.0 and 4.7 ppm each look like two doublet that are nearly similar in chemical shift value. 
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albeit the one at 3.0 ppm is superimposed on many multiplets that could originate from the 

carbon backbone (C2H4) of dppe. 

Iron containing phosphorus chelate. During this work, another ligand 1,1' -

bis(diphenylphosphino)-ferrocene, 1, was reacted with D as well. In this reaction, too, there 

was a bright green color formed. The material was difficult to isolate in crystalline form. 

However, a molecular structiure of this iron containing ligand was determined. 

This information can be found m the supplemental material. Tables of crystal data and 

structure refinement, atomic coordinates, bond lengths and angles, anisotopic displacement 

factors and hydrogen coordinates are given in tables S-l-to-5, respectively, in the 

supplemental material. 

Discussion 

All evidence from the reactions involving dppm suggests that it binds to 

[Me(0)Re(mtp)] in a monodentate fashion, eq 4, regardless of whether rhenium is initially in 

a dimeric form, D, or monomeric, M-tBuPy. The spectroscopic feartures of the sole product 

do not depend on which source of rhenium is used. The ^'P NMR spectra shows two doublet 

peaks that are about 45 ppm apart, one of which is qtiite close to the chemical shift of the free 

ligand. This is the case with other monodentate complexes of dppm, table 2, and thus 

strengthens our interpretation. The 'H NMR spectrum has features like other five-coordinate 

complexes, based on Me(0)Re(mtp) like M-PMePh2, table 1. Thus the best way to represent 

this product is Me(0)Re(mtp)(ri'-dppm) or M-(TI'-dppm). The M-PMePh2 compound was 

found to have the ancillary ligand trans to the phenolic sulfiir, and since its chemical shift is 

similar to M-(r|^-dppm), that structure is reasonable. 
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O O 

dppm 

s Upph, 

M-tBuPy 
M-(ri -dppm) 

V.Tiile the reaction above is shovra without an intermediate, that can not be assumed. 

In fact, an intermediate is likely, given the information collection of ligand exchange 

reactions on these complexes." The minor form, M-tBuPy*, likely directly gives 

M-(TI'-dppm), whereas the major form, M-tBuPy may first yield the intermediate species, 

M-(ri'-dppm)*, eq 5. Then M-(ri'-dppm)* would have to rearrange to form 

M-(ri'-dppm), eq 6. However, this is curious since when M-tBuPy solutions (containing 

both isomers) are treated with bipyridines, two products are formed, and their ratio appears 

static." In this case, the product ratio happens to match that of the starting materials, 

M-tBuPy and M-tBuPy*. 

O ^PPh-

M-tBuPy M-(ri -dppm)* 

(5) 

® PPh2 

M-tBuPy* M-(TI '-dppm) 
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The peaks from the methylene unit of dppm, of the M-(ri'-dppm) product, are 

interesting in that only the coordinated phosphorus causes spliting to these protons. It is 

possible that the other phosphorus couples only very weakly and its coupling is not observed. 

Figure S-3 shows more clearly the A B quartet, which now solely has coupling attributed to 

the hydrogen atoms, as the coupling from phosphorus is gone. Since the decoupling window 

is not so wide, going fiirther upfield for selected decoupling frequencies, revealed a pair of a 

spectra where the coupling from the bound phosphorus still appeared, figures S-3 and S-4. 

This shows that the imcoordinated phosphorus does not significantly couple anything. 

The results for the D and dppe reaction show that each phosphorus atom has a 

rhenium atom bound to it; there are two Re-P bonds created. Indeed, a bridging molecule is 

supported with the results from Job's method of analysis. Again, one dimer (with two Re 

atoms) reacts with one dppe molecule. The structwe however cannot be reasonably be 

interpreted from the 'H NMR for two reasons. The first reason is that the pair of chemical 

shifts assigned to methyl groups suggests two inequivalent structure around rhenium, perhaps 

the M-L / M-L* configuration could be important; one rhenium taking each form. 

However, when M-L / M-L* type configurations are observed, the chemical shift from the 

methylene protons, from the mtp ligand, are greatly different than that of the M-L complex, 

table 3." The fact that at about 4.7 and 3.0 ppm two pair of doublets appear with nearly the 

same chemical shift does not work to strengthen this argument. The multiplet peaks at about 

3 ppm are attributable to the C2H4 backbone of dppe. Certainly, the most unusual feature is 

the shape of the methyl resonances, they look something like a triplet. They are considered 

to be "virtually coupled," something reasonably attributable to a bridging dppe complex.'^ 
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Table 3. The chemical shift of the methylene protons on the mtp ligand of MeReO(mtp)L 
compounds. 
Chemical shifts (ppm) for CHz of mtp 

ligand (L) M-L M-L* 

PCyPhi 4.90 3.13 S.IO'' 4.80 

4-BU'C5H4N 4.79 3.78 5.21 4.89 

dppe 4.75 

4.78 

3.02 

3.05 

a) doublet of doublets, all other peaks doublets 

The structure of the iron containing phosphorus complex was found to have the 

cyclopentadienyl rings in a position such that the phosphorus units are 180 degrees apart. 

When 1 was treated with D, there was a bright green color formed. Clearly, Re-P bonds are 

made. The structure however, is not known. 

Overall, the results from this work is interesting, with some of the results more 

difficult to interpret than others, there remains opportunity here to study these systems more, 

especially in light of the new mechanism proposed involving a 'turnstile' type movement of 

ligands.'^ Kinetics and mechanistic studies may reveal how these reaction procede, and how 

the following reaction, eq 6, occurs. It would be important to know whether this reaction 

occurs via an intra or inter molecular rearrangement. 

Re- Re 
CH 
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Figure S-1. A Job's method plot for the reaction of D and dppe. The absorbance at 602 nm 

versus the concentration of the dimer, D, where the sxim of the concentration of the D and the 

ligand is 2 mM. The actual absorbance values, squares, and the corrected values, triangles. 

both show the peak to be at 1 mM. 
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T-
-10 2C IS 10 -15 -20 -2 5 ppm 

Figure S-2. The NMR spectrum of M-(TI'-dppm) in CTDS. The pair of doublets are 

assigned to each P of dppm, one bound and one free. The singlet for some excess free dppm. 

All of the peaks are sharp. 
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Figiire S-3. The 'H NMR {^'P} spectrum of M-(TI'-dppm) in C7D8 over the range of about 

2.6 to 5.1 ppm. The peaks are described in table 1, and the decoupling is now set at 20 ppm. 

It is of particular interest that the coupling to the phosphorus at 20 ppm, in ^'P NMR, causes 

certain couplings to disappear. 
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Figure S-4. The 'H NMR {^'P} spectrum of M-(TI'-dppm) in CyDg over the range of about 

2.6 to 5.1 ppm. The decoupling is now set at -25 ppm, the chemical shift corresponding to 

the free phosphorus atom of dppm. 
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Figure S-5. The 'H NMR {^'P} spectrum of M-(TI'-dppm) in CJDS over the range of about 

2.6 to 5.1 ppm. The decoupling is now set at -150 ppm. This spectrum looks similar to 

figure 1, where there has been no decoupling at all. 
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Figiire S-6. The 'H NMR {^'P} spectrum of the result of M-tBuPy and dppe mixed in CyDg, 

over the range of about 2.5 to 5.0 ppm. 
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Figure S-7. The molecular structure of 1 drawn with 30% probability elipsoids. 
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Table S-1. Crystal data and structure refinement for 1. 

Empirical formula 
Formula weight 
Temperature 
Wavelength 
Crystal system 
Space group 

Unit cell dimensions 

Volume 
Z 
Density (calculated) 

Absorption coefficient 
F(OOO) 
Crystal size 
Theta range for data collection 
Index ranges 
Reflections collected 
Independent reflections 
Completeness to theta = 26.37° 
Absorption correction 
Max. and min. transmission 
Refinement method 
Data / restraints / parameters 

Goodness-of-fit on 
Final R indices [I>2sigma(I)] 
R indices (all data) 
Largest diff. peak and hole 

a=90° 

p= 101.448(2)° 
Y = 90° 

C34H28FeP2 
554.35 
173(2)K 
0.71073 A 
Monoclinic 
P2i/c 

a = 8.6260(8) A 
b= 18.4753(17) A 
c = 8.6909(8) A 
1357.5(2) A^ 
2 
1.356 Mg/m^ 

0.695 mm"^ 
576 
0.35 X 0.30 X 0.30 mm^ 
2.20 to 26.37°. 
-10<=h<=10,0<=k<=23, 0<=l<=10 

8070 
2767 [R(int) = 0.0247] 
99.9 % 
Empirical with SADABS 
0.8186 and 0.7929 
Full-matrix least-squares on F^ 
2767/0/169 

1.024 
R1 = 0.0348, wR2 = 0.0940 
R1 =0.0516, wR2 = 0.0999 
0.538 and -0.239 e.A*^ 
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Table S-2. Atomic coordinates (x lO"*) and equivalent isotropic displacement parameters 
(A^x 10^) for 1. U(eq) is defined as one third of the trace of the orthogonalized U'^ tensor. 

X y z U(eq) 

Fe 0 5000 5000 36(1) 
P(l) 1137(1) 3643(1) 7726(1) 35(1) 
C(l) 1122(2) 4576(1) 7088(2) 34(1) 
C(2) 166(3) 5179(1) 7343(2) 37(1) 
C(3) 688(3) 5801(1) 6631(3) 48(1) 
C(4) 1966(3) 5589(2) 5938(3) 54(1) 
C(5) 2248(3) 4843(2) 6197(3) 47(1) 
C(6) 2152(2) 3746(1) 9784(2) 31(1) 
C(7) 3107(2) 4336(1) 10312(3) 34(1) 
C(8) 3951(2) 4373(1) 11840(3) 41(1) 
C(9) 3861(3) 3818(1) 12874(3) 45(1) 
cm 2905(3) 3228(1) 12372(3) 46(1) 
C(ll) 2077(3) 3186(1) 10846(3) 42(1) 
C(12) -906(2) 3478(1) 7930(2) 33(1) 
C(13) -1818(3) 2998(1) 6899(3) 45(1) 
C(14) -3391(3) 2869(1) 6969(3) 53(1) 
C(15) -4062(3) 3214(1) 8081(3) 48(1) 
C(16) -3156(3) 3676(1) 9138(3) 43(1) 
C(17) -1597(3) 3810(1) 9067(3) 36(1) 
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Table S-3. Bond lengths [A] and angles [°] for 1. 

Fe-C(5) 2.031(2) 
Fe-C(5)#l 2.031(2) 
Fe-C(l)#l 2.036(2) 
Fe-Ccl) 2.036(2) 
Fe-C(2)#l 2.040(2) 
Fe-C(2) 2.040(2) 
Fe-C(4) 2.044(2) 
Fe-C(4)#l 2.044(2) 
Fe-C(3) 2.053(2) 
Fe-C(3)#l 2.053(2) 
P(l)-C(l) 1.811(2) 
P(l)-C(12) 1.831(2) 
P(l)-C(6) 1.839(2) 
C(l)-C(2) 1.429(3) 
C(l)-C(5) 1.444(3) 
C(2)-C(3) 1.419(3) 
C(3)-C(4) 1.412(4) 
C(4)-C(5) 1.411(4) 
C(6)-C(7) 1.388(3) 
C(6)-C(ll) 1.397(3) 
C(7)-C(8) 1.384(3) 
C(8)-C(9) 1.375(3) 
C(9)-C(10) 1.385(3) 
C(10)-C(ll) 1.378(3) 
C(12)-C(13) 1.389(3) 
C(12)-C(17) 1.393(3) 
C(13)-C(14) 1.391(3) 
C(14)-C(15) 1.378(4) 
C(15)-C(16) 1.377(3) 
C(16)-C(17) 1.381(3) 

C(5)-Fe-C(5)#l 180.0 
C(5)-Fe-C(l)#l 138.41(9) 
C(5)#l-Fe-C(l)#l 41.59(9) 
C(5)-Fe-C(l) 41.59(9) 
C(5)#l-Fe-C(l) 138.41(9) 
C(l)#l-Fe-C(l) 180.0 
C(5)-Fe-C(2)#l 111.03(10) 
C(5)#l-Fe-C(2)#l 68.97(10) 
C(l)#l-Fe-C(2)#l 41.05(9) 
C(l)-Fe-C(2)#l 138.95(9) 
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Table S-3 continued 

C(2)-C(l)-Fe 69.62(12) 
C(5)-C(l)-Fe 69.03(12) 
P(l)-C(l)-Fe 127.75(11) 
C(3)-C(2)-C(l) 108.7(2) 
C(3)-C(2)-Fe 70.22(13) 
C(l)-C(2)-Fe 69.33(12) 
C(4)-C(3)-C(2) 107.7(2) 
C(4)-C(3)-Fe 69.49(15) 
C(2)-C(3)-Fe 69.21(13) 
C(5)-C(4)-C(3) 109.1(2) 
C(5)-C(4)-Fe 69.26(13) 
C(3)-C(4)-Fe 70.19(13) 
C(4)-C(5)-C(l) 107.8(2) 
C(4)-C(5)-Fe 70.23(13) 
C(l)-C(5)-Fe 69.38(12) 
C(7)-C(6)-C(ll) 117.7(2) 
C(7)-C(6)-P(l) 122.69(17) 
C(ll)-C(6)-P(l) 119.39(16) 
C(8)-C(7)-C(6) 121.4(2) 
C(9)-C(8)-C(7) 120.2(2) 
C(8)-C(9)-C(10) 119.3(2) 
C(1I)-C(10)-C(9) 120.6(2) 
C(10)-C(ll)-C(6) 120.8(2) 
C(13)-C(12)-C(17) 118.1(2) 
C(13)-C(12)-P(l) 118.45(17) 
C(17)-C(12)-P(l) 123.42(16) 
C(12)-C(13)-C(14) 120.9(2) 
C(15)-C(14)-C(13) 120.0(2) 
C(16)-C(15)-C(14) 119.5(2) 
C(15)-C(16)-C(17) 120.6(2) 
C(16)-C(17)-C(12) 120.7(2) 

Symmetry transformations used to generate equivalent atoms: 
#1 -x,-y+l,-z+l 
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Table S-4. Anisotropic displacement parameters (A^x 10^) for 1. The anisotropic 
displacement factor exponent takes the form: h" a*^U'' + ... + 2 h k a* b* U'~ ] 

uii U22 U33 U23 Ul3 Ul2 

Fe 29(1) 53(1) 23(1) 1(1) 0(1) -14(1) 
P(l) 30(1) 40(1) 34(1) -10(1) 6(1) 0(1) 
C(l) 28(1) 48(1) 23(1) -2(1) 1(1) -7(1) 
C(2) 41(1) 45(1) 23(1) -4(1) 2(1) -4(1) 
C(3) 57(2) 46(2) 33(1) 3(1) -11(1) -15(1) 
C(4) 44(1) 74(2) 37(1) 13(1) -10(1) -33(1) 
C(5) 26(1) 80(2) 32(1) 0(1) 0(1) -13(1) 
C(6) 26(1) 34(1) 34(1) -2(1) 4(1) 7(1) 
C(7) 28(1) 39(1) 36(1) 0(1) 5(1) 2(1) 
C(8) 30(1) 49(2) 41(1) -3(1) 1(1) -1(1) 
C(9) 36(1) 57(2) 37(1) 4(1) -2(1) 9(1) 
C(10) 44(1) 47(2) 45(1) 14(1) 4(1) 9(n 
C(ll) 40(1) 35(1) 49(1) 0(1) 5(1) 2(1) 
C(12) 31(1) 32(1) 36(1) -2(1) 6(1) 0(1) 
C(13) 45(1) 45(1) 46(1) -16(1) 11(1) -5(1) 
C(14) 44(1) 52(2) 60(2) -13(1) 5(1) -18(1) 
C(15) 34(1) 43(2) 67(2) 0(1) 12(1) -8(1) 
C(16) 41(1) 41(1) 51(1) -2(1) 19(1) -1(1) 
C(17) 36(1) 37(1) 36(1) -5(1) 8(1) -5(1) 
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Table S-5. Hydrogen coordinates ( x lO'*) and isotropic displacement parameters (A" x 10^) 
for 1. 

X y z U(eq) 

H(2) -732 5164 7914 44 
H(3) 225 6297 6612 58 
H(4) 2558 5914 5336 65 
H(5) 3083 4551 5833 56 
H(7) 3183 4722 9610 41 
H(8) 4595 4783 12175 49 
H(9) 4448 3840 13921 53 
H(10) 2819 2848 13087 55 
H(ll) 1448 2771 10513 50 
H(I3) -1361 2754 6135 54 
H(14) -4003 2543 6249 63 
H(15) -5142 3134 8119 57 
H(16) -3609 3905 9924 52 
H(17) -988 4131 9801 43 
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Abstract 

Dialkyl- and diarylsulfoxides are oxidized to sulfones by hydrogen peroxide using 

methyltrioxorhenium as the catalyst. The reaction rate is negligible without a catalyst. The 

kinetics study was performed in CH3CN-H2O (4:1 v/v) at 298 K with [H"^] at 0.1 M, 

conditions which make the equilibration between MTO and its peroxo complexes more rapid 

than the oxygen-transfer step. The values for the rate constant for the oxygen-transfer step 

lie in the range 0.1-3 L mol*' s"'. The rate constants were significantly smaller than for the 

oxidation of sulfides to sulfoxides. A study of ring-substituted diaryl sulfoxides yielded 

kinetics results that are consistent with nucleophilic attack of the sulfur atom on the peroxide 

oxygen group since p = -0.65. The results cited refer to the reactions of the diperoxo from of 

the catalyst, CH3Re(0)(ri'-02)2H20. The monoperoxo complex showed no measurable 

reactivity towards sulfoxides, in contrast with the situation for nearly every other substrate. 



www.manaraa.com

121 

That unusual finding suggests a hydrogen-bonded interaction between the substrate and the 

diperoxorhenium compound which cannot exist with the monoperoxo compound. 

Introduction 

Methyltrioxorhenium (CHjReOs, abbreviated as MTO) is an effective catalyst for 

reactions in which a substrate X, usually an electron-rich species, is oxidized to XO by 

hydrogen peroxide: 

X + H202->X0 + H20 (1) 

In these reactions an oxygen atom is transferred firom peroxide to the substrate. The 

important place of 0-atom transfer in industry and biology has been documented,' and a 

common mechanism suggested for inorganic and organic peroxides.^ The particular place of 

MTO in this arena has been reviewed.^"^ In brief, two peroxorhenium compounds play 

catalytic roles, usually about equally, they have been designated A and B, as shown in 

Scheme 1. The species A and B attain their equilibrium concentrations rapidly but not 

instantaneously, during the operation of the catalytic cycle the improved steady-state 

method^ approximates their concentrations to good accuracy. 

In studying the oxidation of alkyl and aryl sulfides (X = RaS, ArSR, AraS) to 

g 
sulfoxides, it was noted that further oxidation to sulfones ensued over longer times. We 

were motivated to examine this second oxidation step, not only by its flmdamental interest 

and utility in organic synthesis,' but also by certain recent findings with diaryl sulfines, X = 

AraCSO. These compounds show a remarkable U-shaped Hammett plot when aromatic 

subtituents are changed; thioketones, AraCS, presented a regular progression of rates.'" 

Since this phenomenon could in part be attributed to the presence of an electronegative 
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oxygen atom on the sulfines, we undertook a study of the kinetics of oxidation of diaryl 

sulfoxides. The sulfoxides are related to diaryl sulfides as sulfines are to thioketones, whose 

reactions featiire a steady (ordinary) increase in rate as substituents on the aromatic ring are 

made more electron-donating.® A series of substrates AraSO was therefore examined as a 

part of this study. 

Scheme 1 

Experimental Section 

Materials. Reagent grade acetonitrile was used; laboratory distilled water was 

purified by a Milli-Q water system. To maintain homogeneity and afford reasonable 

solubility for these reagents, particularly the less soluble diaryl sulfoxides, 4:1 acetonitrile-

Most sulfoxides were obtained commercially. 

Bis(4-dinitrophenyl)sulfoxide was prepared from the sulfide by MTO-catalyzed 

oxidation. The sulfide (2.5 mmol in 25 mL acetonitrile) was treated with 1.0 equiv. 

hydrogen peroxide and 4% MTO. The product was isolated after a 24 h reaction time by 

filtration after overnight cooling at -10 °C. Elem. anal. (CuHgSNiOs) foimd (calcd.): C, 

49.09 (49.31); H, 2.61 (2.76); N, 9.48 (9.58). 

Kinetics. The progress of most reactions was monitored spectrophotometrically, with 

NMR used occasionally. The reactions were carried out at 25.0 °C in quartz NMR tubes. 

==^ ^^0 ^ 
k-iHaO CH3 

A MTO B 

water was used as the solvent. MTO was purchased or prepared from sodium perrhenate." 
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The solutions contained 0.10 M trifluoromethanesulfonic acid to stabilize MTO-peroxide 

against deactivation.'" 

Owing to the high molar absorptivities, short-path (0.02-0.1 cm) UV cuvettes were 

used. Typical reaction conditions were 1 mM sulfoxide, 100 mM hydrogen peroxide, and 0.5 

mM MTO. These conditions offer accurate absorbance changes. The recorded absorbance 

amplitudes agreed with those calculated from the molar absorptivities for the conversion of 

sulfoxide to sulfone. The NMR method was mandatory for MeiSO, given the lack of 

suitable absorptions. The C//3-S(0)R resonance was monitored with time. Both UV and 

NMR methods were used for 3 as a double-check. Typical NMR concentrations were 10 

mM sulfoxide, 1 M hydrogen peroxide and 1.0 mM MTO. 

Results 

Values for equilibrium and rate constants for Scheme 1 pertinent to the interpretation 

of the data have been determined: K\ = k\/k.i = 347 L mol"', Ar2 = 91 L mol"'; k[ = 15.5 L 

mol*' s*', and ^2 = 0.17 L mol"' s''.'° Most kinetics experiments were carried out with a 

hydrogen peroxide concentration sufSciently high that essentially all of the rhenium was 

present as the diperoxo compound B. Under such conditions, the contribution of A to the 

kinetics can be entirely ignored. The data consist of absorbance-time (UV) or intensity-time 

(NMR) values, such as those displayed in Figure 1. Each experiment was fit very well by a 

first-order rate equation, establishing a first-order dependence on the sulfoxide concentration. 

As shown in Figure 2 for PhS(0)Me and (4-N02C6H4)2S0, the plot of ^bs against [Re]T is 

linear. This pattern affirms this rate law; 
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Figure 1. The buildup of bis(diniethyl)sulfone as determined from the integrated intensity of 

its 'H resonance. The inset shows that fit to first-order kinetics through the linearity of die 

plot of ln{[Me2SO]o - [Me2S02]t} with time which gave k = 2.07 x 10*^ s*^ Initial 

concentrations were 1.3 mM MTO, 9.9 mM dmso, 1.0 M HiOz in 4:1 acetonitrile-water 

containing 0.1 M HOTf. 
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PhS(0)Me 

O 

CO 

O 

0.5 
(4-NO C H ) SO 

0 0.5 1.5 1 2 

[Re]^ / mM 

Figure 2. The pseudo-first-order rate constants (kobs) for bis(4-nitrophenyi) sulfoxide 

(circles) and PhS(0)Me (squares) versus the total initial MTO concentration. The slopes, 

which represent are 2.08 and 0.113 L mof's"', respectively. 
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d[R2S02] / dt = k4[R2SO][Re]T (2) 

The rate constant proved independent of the hydrogen peroxide concentration in the range 

0.1-1.0 mol/L. These concentration dependences show that the slope of the lines in Figure 2 

afforu the values of A4, the rate constant for the reaction between B and R2SO. The values of 

JiA for the various sulfoxides studied are presented in Table 1. For entry 3, data from NMR 

and spectrophotometry were used to confirm agreement between the two techniques. Thus, 

the value of kA, for Me^SO, (which seemea low, given the trends in Table 1) can be trusted. 

Further, it was redetermined multiple times. 

Kinetics experiments were also carried out at much lower concentrations of hydrogen 

peroxide. These are the conditions under which ^3 for the reaction between A and sulfoxides 

could be determined. With no immediate success in determining under the selected 

conditions, the kinetics simulation program KinSim'^"'^ was used to select the optimum 

conditions, especially the peroxide concentration, that would best elicit the reactivity of A. 

Regardless of any reasonable assumption as to the relative values of ^3 and A4, no 

contribution from the term could be detected expenmentally. To ensure that the procedure 

was sound, experiments were carried out on thioanisole, for which die ^3 step provides the 

major pathway, as once again confirmed. Then, to be certain that the sulfoxide does not 

interact with catalytic intermediate A, measurements were carried out on a mixture of 

diphenyl sulfoxide and thioanisole. The results obtained were as if thioanisol alone had 
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Table 1. Ra ce Constants for the Oxidation of Sulfoxides with Hydrogen Peroxide Catalyzed 

by Methyltrioxorhenium 

Entry Substrate k4 / L mol"' s"' 

1 MezSO 1.5 ±0.1* 

2 PhSfO)Me 2.08 ± 0.03 

3 4-MeC6H4S(0)Me 2.83 ± 0.07 

2.9 ±0.1* 

4 PhCH2S(0)Me 2.87 ± 0.05 

5 (PhCH2)2SO 2.02 ± 0.02 

6 (4-MeOC6H4)2SO 3.10 ±0.02 

7 (4-MeC6H4)2SO 1.72 ±0.01 

8 Ph2S0 0.91 ±0.02 

9 (4-FC6H4)2S0 0.68 ± 0.02 

10 (4-C1C6H4)2S0 0.54 ±0.02 

11 (4-N02C6H4)2S0 0.113 ± 0.001 

* Determined from NMR; others determined from UV-Vis measurements 
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been used; the sulfoxide did not alter the rate and in the time allotted it was itself not 

oxidized. We thus conclude kjki > 250 for diphenyl sulfoxide: the kj path does not enter. 

Sulfoxides are much less reactive towards A than B and they do not coordinate to 

MTO (or A) to any detectable extent. Thus, they do not affect the oxidation of sulfides by 

MTO-H2O2. These points are not out of the ordinary', in that sulfoxides are not strong Lewis 

bases and sulfides are oxidized more rapidly than sulfoxides. The relative reactivities of A 

and B are striking; only for allylic alcohols has such an effect been noted, ^3 « which 

was reasonably ascribed to special hydrogen bonding. 

Discussion 

Large kinetic differences are found between sulfides and sulfoxides, favoring the 

sulfides by some 10^; which has been noted for these species before.The inductive effect 

of the 0x0 group on the sulfoxide must greatly lower the nucleophilicity of the sulfur atom. It 

is important to contrast kinetics against thermodynamics. For that purpose we use values for 

thermodynamic functions of the sulfur compounds given.^' For these two reactions the 

values of the molar Gibbs energies at 298 K are as shown: 

Me2S + H2O2 Me2S0 + H2O -206 kJ 

Me2S0 + H2O2 Me2S02 H2O —307 kJ 

Thece data apply to Me2S(0)n in the gas phase, but the same picture emerges when data are 

referenced to the condensed state.^ This trend is more or less independent of the R-group on 

the sulfur atom; for Ph2S analogues, for which AH° but not AG° values are known,^' the AH; 

values are -221 and -324 kJ, respectively. Thus, it is clear that the thermodynamic trends lie 

in opposite order to the kinetic trends. 
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The rate constants for the series (X-C6H4)2SO were analyzed by the linear-free-

energy correlation method described by Hammett. For this purpose the x-axis is given by 2a, 

where a is the Hammett substituent constant. Twice the value of sigma was taken, since two 

equivalent groups are present in these compounds. The resulting correlation is displayed in 

Figure 3. The slope of the line gives the reaction constant as p = -0.65. The linearity of the 

plot indicates that a common mechanism, and a common rate-controlling step, operates 

throughout the series.'® The negative value of p shows that the reaction center (the sulfur 

atom) becomes more positive in the transition state than in the reagent, consistent with a 

mechanism in which die peroxide group has become electrophically activated by 

coordination to the heptavalent rhenium of B. In that sense, then, the electron pair of the 

sulfoxide has it acting as a nucleophile attacking the peroxo oxygen of B. This mechanism 

has been assigned to nearly all reactions in which substrate X is oxidized by hydrogen 

peroxide under the catalytic influence of MTO.^''* (The notable exception is the case of the 

sulfines, X = AtzCSO.'®) 

We can make certain comparisons between the diaryl sulfoxides reported here with 

rate constants for diarylthioketones,'° and aryl sulfides.® In that case, the available data refer 

not to Ar2S but to ArSMe.® The Hammett reaction constants are given here: 

AxaSO ArzCS ArSMe AriCSO 

2<y 2(7 CT 2o 

p =-0.65 —1.1 -0.98 U-shaped 
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Figure 3. A Hammett plot for the oxidation of substituted diarylsulfoxides by hydrogen 

peroxide with MTO as a catalyst. The slope of die line gives p = -0.65. 
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Clearly the same effects operate along each series, save for the thioketones. The fact 

that the sulfoxides have a smaller p-value compared to the sulfides is consistent with the 

electronegative oxygen atom muting the kinetic effects of the ring substituent, owing to its 

polarizing effects in the transition state. Much more dominant than those trends, however, 

are the large changes (~10^) in reacti'.nty of sulfides to sulfoxides.'^ 

Another means of exploring these effects is by means of a linear-fi-ee-energy 

correlation between parallel sets of compounds, sulfides and sulfoxides. This method allows 

the inclusion of sets of compounds that caimot be accommodated in a single Hammett 

correlation. Figure 4 presents a plot of the rate constant ^ for sulfoxides, ArS(0)Me and 

Ar2S0, against the rate constant (^3 or ̂ 4, as available) for ArSMe and Ar2S. The number of 

data points is limited, and the correlation far fi-om perfect. Nonetheless, these results suggest 

that the same electronic factors are, by-and-large, applicable to all the rate constants for the 

parallel reactions of sulfoxides and sulfides. The slope of that imperfect correlation is about 

0.4 ±0.1, again showing that the electronic effects of the additional oxygen atom on the 

reaction center. The matter under discussion is not simply that sulfoxides are much less 

reactive than the sulfides, which was dealt with in the opening part of the Discussion. 

Rather, this point concems the relative rates along the series, sulfoxide compared to sulfide. 

Put another way, each sulfoxide is less reactive than its sulfide, but along a series in which 

the sulfide rate constants rise a given amount, those for the sulfoxide rise less. This effect 

signals a lessening of the effect of the oxygen atom for the more reactive compounds. 

The most notable feature of the kinetic data for the sulfoxides is the lack of a 

detectable contribution for the ks pathway. In other words, oxidation proceeds entirely 
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Figure 4. Values of log (A4) for selected sulfoxides versus log (^x) for the parent sulfide 

compounds (ref 12). Compounds are numbered according to Table 1. A general linear 

correlation with a slope of about 0.4, can be seen. Values for the sulfides are ks (filled 

squares) and (open triangles). 
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through the diperoxorhenium compound B, and not at all with A. This contrasts with the 

usual trend for many substrates, where A and B react at comparable rates (ks ~ Indeed, 

in most of those cases A carries the much larger portion of the reaction, owing to a rate of 

regeneration of B from A that makes the more probable fate of A oxygen atom transfer; 

namely (often) this inequality holds: ki[X] » k2[H202]. The single exception to these 

general statements to date has been the oxidation of allylic alcohols,'® a reaction that has also 

been examined by others.*^'^'' That unusual finding was interpreted to suggest a hydrogen-

bonded interaction between the substrate and the diperoxorhenium compound B, which 

caimot exist with A, as conveyed by the structure shown (see reference 15). 

0—Re—lj 

--9 H 

/ "^c—0"° 
1 / \ 

Sulfoxides do not offer a parallel pathway. It is however known that B has a water 

molecule bonded to rhenium and A does not. Thus, the Re atom in B is seven-coordinate 

structure," and in A five-coordinate." The water molecule can allow for hydrogen bonding 

in the transition state of the oxidation. The oxo group on the sulfoxide can hydrogen-bond 

with this water molecule and make a six membered ring: 
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H'°\ 

0 

In support of this suggestion it should be noted that sulfones are formed to a greater extent 

during sulfide oxidation by MTO-H2O2 as the water concentration increases. 
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GENERAL CONCLUSION 

The family of MeReO(mtp)L compounds, which are showing promising catalytic 

behavior, have proved to be an interesting class of compoimds to study, given their unusual 

method of ligand exchange. All of these processes involve an intermediate species, which 

curiously is a stereoisomer of the product. The intermediate and product do not undergo 

unimolecular rearrangement, another ligand is needed. The 'turnstile' mechanism has been 

proposed to describe how the ligands exchange, and why and intermediate forms at all. That 

said, we have proposed that the entering and leaving ligands must do so from the same 

position, if the principle of microscopic reversibility is to hold, and the turnstile mechanism 

can explain this. It is of course important to understand how ligands substitute on these 

compounds, since that is an important part the catalytic process. 

The intermediate interestingly shows an unusual long range (four-bond) coupling, 

which may occur when a W-configuration exists. Such an arrangement can be drawn here, 

involving HaHb-C-S-Re-P. Certainly this coupling only happens when a phosphorus donor 

ligand is used, and decoupling experiments have shown that ^'P to be the origin of the 'extra' 

splitting. Thus, a lot more is now known about the intermediate, often denoted M-L*, which 

had been previously observed but not well studied. Unfortunately, no x-ray structures, of 

compounds with the intermediate configuration, are known. However, the intermediate is 

believed to have the ancillary ligand and the methyl group in opposite positions. 

The preparation of the hydroxide bridging dimer adduct, is important since it further 

supports the intermediates that have been proposed during kinetics studies of 

monomerization of {MeReO(mtp)}2, or D. This, is especially nice since an adduct that 
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supports the other intermediate in the scheme as been previously prepared, namely die 

dimethylsulfoxide adduct of D. 

The work with chelating ligands was interesting, the results were unfortunately not 

without some conundrums. It does seem certain that the stoichiometiy is different for dppm 

and dppe. and that for dppm yields two MeRe(mtp)(n,'-dppm) compounds for every D that 

reacts. The results with dppe were not so clear. Certainly Re-P bonds are made, but the 

absolute structure of the product is not known. 

The oxidation of sulfoxides proved to be quite unique in that only B can oxidize 

them. Only one other case of such unusual reactivity was reported. This fact has been 

attributed to hydrogen bonding of a coordinated water molecule of B hydrogen-bonding to 

the sulfoxide substrate in the transition state of the oxygen transfer reaction. 
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